共 50 条
In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer
被引:131
作者:
Chen, Tianjun
[1
]
Song, Chengjie
[1
]
Fan, Mingshan
[1
]
Hong, Yuanzhi
[2
]
Hu, Bo
[1
]
Yu, Longbao
[1
]
Shi, Weidong
[1
]
机构:
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
关键词:
Interfacial charge transfer;
CuS;
g-C3N4;
Hydrogen production;
CARBON NITRIDE SEMICONDUCTORS;
VISIBLE-LIGHT IRRADIATION;
HYDROGEN-PRODUCTION;
EFFICIENT;
EVOLUTION;
HETEROSTRUCTURES;
PERFORMANCE;
G-C3N4;
HETEROJUNCTION;
GENERATION;
D O I:
10.1016/j.ijhydene.2017.03.188
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In this work, novel CuS/g-C3N4 composite photocatalysts were successfully prepared via a simple in-situ growth method. CuS nanoparticles, with an average diameter of ca.10 nm, were well dispersed on the surface of g-C3N4, revealing that g-C3N4 nanosheets were promising support for in-situ growth of nanosize materials. The CuS/g-C3N4 composites exhibited highly enhanced visible light photocatalytic H-2 evolution from water -splitting compared to pure g-C3N4. The optimum photocatalytic activity of 2 wt% CuS/g-C3N4 composite photocatalytic H-2 evolution was about 13.76 times higher than pure g-C3N4. The enhanced photocatalytic activity is attributed to the interfacial charge transfer (IFCT). In this system, electrons in the valence band (VB) of g-C3N4 can transfer directly to CuS clusters, causing the reduction of partial CuS to Cu2S, which can act as an electron sink and co-catalyst to promote the separation and transfer of photo-generated electrons. The accumulated photoinduced electrons in CuS/Cu2S clusters could effectively reduce H+ to produce H-2. This work provides a possibility for constructing low-cost CuS as a substitute for noble metals in the photocatalytic production of H-2 via a facile method based on g-C3N4. (C) 2017 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:12210 / 12219
页数:10
相关论文
共 50 条