Position sensorless control system of SRM using neural network

被引:11
作者
Baik, WS
Kim, MH
Kim, NH
Kim, DH
机构
来源
PESC 04: 2004 IEEE 35TH ANNUAL POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-6, CONFERENCE PROCEEDINGS | 2004年
关键词
D O I
10.1109/PESC.2004.1355088
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a position sensorless control system of Switched Reluctance Motor (SRM) using Neural Network. The control of an SRM depends on the commutation of the stator phases in synchronism with the rotor position. The position sensing requirement increases the overall cost and complexity. In this paper, the current-flux-rotor position lookup table based position sensorless operation of a SRM is presented. Neural Network is used to construct the current-flux-rotor position lookup table, and is trained by sufficient experimental data. Experimental results for a 1-hp SRM is presented for the verification of the proposed sensorless algorithm.
引用
收藏
页码:3471 / 3475
页数:5
相关论文
共 8 条
[1]  
BAIK WS, 2002, P ICEE, V2, P803
[2]  
BOSS BK, 2002, MODERN POWER ELECT A
[3]   Four-quadrant and zero-speed sensorless control of a switched reluctance motor [J].
Hossain, SA ;
Husain, I ;
Klode, H ;
Lequesne, B ;
Omekanda, AM ;
Gopalakrishnan, S .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2003, 39 (05) :1343-1349
[4]   Neural network-based estimation of power electronic waveforms [J].
Kim, MH ;
Simoes, MG ;
Bose, BK .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 1996, 11 (02) :383-389
[5]  
LOPEZ GG, 1999, IEEE T IND APPL, V35, P859
[6]   An approach for sensorless position estimation for switched reluctance motors using artifical neural networks [J].
Mese, E ;
Torrey, DA .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2002, 17 (01) :66-75
[7]  
MILLER TJE, 2003, ELECT CONTROL SWITCH
[8]  
VAS P, 1999, ARTIFICIAL INTELLIGE