Recent Advances and Prospects of Cathode Materials for Rechargeable Aqueous Zinc-Ion Batteries

被引:232
作者
Chen, Lineng [1 ]
An, Qinyou [1 ]
Mai, Liqiang [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
aqueous zinc-ion batteries; cathode materials; electrochemical reaction mechanism; energy storage; MANGANESE-DIOXIDE; HIGH-CAPACITY; ELECTROCHEMICAL PROPERTIES; SOLID-STATE; CYCLE LIFE; ELECTRODE MATERIALS; ENERGY-STORAGE; PERFORMANCE; INTERCALATION; SPINEL;
D O I
10.1002/admi.201900387
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical energy storage devices will definitely play a vital role in the future energy landscape of the world. The innovation of electrode materials is a key task for the breakthrough of present bottleneck faced by electrochemical energy storage devices. Aqueous zinc-ion batteries (AZIBs) are gaining rapid attention, and they offer tremendous opportunities to explore the low-cost, safe, and next-generation green batteries for large-scale stationary storage applications. In this review, the authors aim to give a comprehensive overview and summary of the recent progresses in cathode materials for AZIBs. Broadly, the authors classify the cathode materials for AZIBs into four groups: manganese-based cathodes, vanadium-based cathodes, Prussian blue analogs, and organic compounds. The reaction mechanisms, zinc storage properties, and several optimizing strategies of these cathode materials are summarized. Comparative observations of the main cathode families are discussed. Moreover, the emerging challenges and future research perspectives of cathode materials for AZIBs are proposed.
引用
收藏
页数:24
相关论文
共 144 条
  • [1] Solid-state, high-performance supercapacitor using graphene nanoribbons embedded with zinc manganite
    Ahuja, Preety
    Sharma, Raj Kishore
    Singh, Gurmeet
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (09) : 4931 - 4937
  • [2] Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode
    Alfaruqi, Muhammad H.
    Mathew, Vinod
    Song, Jinju
    Kim, Sungjin
    Islam, Saiful
    Pham, Duong Tung
    Jo, Jeonggeun
    Kim, Seokhun
    Baboo, Joseph Paul
    Xiu, Zhiliang
    Lee, Kug-Seung
    Sun, Yang-Kook
    Kim, Jaekook
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (04) : 1684 - 1694
  • [3] Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System
    Alfaruqi, Muhammad H.
    Mathew, Vinod
    Gim, Jihyeon
    Kim, Sungjin
    Song, Jinju
    Baboo, Joseph P.
    Choi, Sun H.
    Kim, Jaekook
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (10) : 3609 - 3620
  • [4] Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery
    Alfaruqi, Muhammad Hilmy
    Islam, Saiful
    Putro, Dimas Yunianto
    Mathew, Vinod
    Kim, Sungjin
    Jo, Jeonggeun
    Kim, Seokhun
    Sun, Yang-Kook
    Kim, Kwangho
    Kim, Jaekook
    [J]. ELECTROCHIMICA ACTA, 2018, 276 : 1 - 11
  • [5] A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications
    Alfaruqi, Muhammad Hilmy
    Gim, Jihyeon
    Kim, Sungjin
    Song, Jinju
    Duong Tung Pham
    Jo, Jeonggeun
    Xiu, Zhiliang
    Mathew, Vinod
    Kim, Jaekook
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2015, 60 : 121 - 125
  • [6] Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode
    Alfaruqi, Muhammad Hilmy
    Gim, Jihyeon
    Kim, Sungjin
    Song, Jinju
    Jo, Jeonggeun
    Kim, Seokhun
    Mathew, Vinod
    Kim, Jaekook
    [J]. JOURNAL OF POWER SOURCES, 2015, 288 : 320 - 327
  • [7] Pyro-Synthesis of Nanostructured Spinel ZnMn2O4/C as Negative Electrode for Rechargeable Lithium-Ion Batteries
    Alfaruqi, Muhammad Hilmy
    Rai, Alok Kumar
    Mathew, Vinod
    Jo, Jeonggeun
    Kim, Jaekook
    [J]. ELECTROCHIMICA ACTA, 2015, 151 : 558 - 564
  • [8] Effects of zinc and manganese ions in aqueous electrolytes on structure and electrochemical performance of Na0.44MnO2 cathode material
    Bai, Shouli
    Song, Jingli
    Wen, Yuehua
    Cheng, Jie
    Cao, Gaoping
    Yang, Yusheng
    Li, Dianqing
    [J]. RSC ADVANCES, 2016, 6 (47): : 40793 - 40798
  • [9] Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode
    Cai, Yangsheng
    Liu, Fei
    Luo, Zhigao
    Fang, Guozhao
    Zhou, Jiang
    Pan, Anqiang
    Liang, Shuquan
    [J]. ENERGY STORAGE MATERIALS, 2018, 13 : 168 - 174
  • [10] Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material
    Chae, Munseok S.
    Heo, Jongwook W.
    Kwak, Hunho H.
    Lee, Hochun
    Hong, Seung-Tae
    [J]. JOURNAL OF POWER SOURCES, 2017, 337 : 204 - 211