Convergence theorems for equilibrium problem, variational inequality problem and countably infinite relatively quasi-nonexpansive mappings

被引:83
作者
Zegeye, Habtu [2 ]
Ofoedu, Eric U. [3 ]
Shahzad, Naseer [1 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[2] Bahir Dar Univ, Bahir Dar, Ethiopia
[3] Nnamdi Azikiwe Univ, Dept Math, Awka, Anambra State, Nigeria
关键词
Equilibrium problem; gamma-inverse strongly monotone mappings; Monotone mappings; Strong convergence; Strongly monotone mappings; Variational inequality problems; BANACH-SPACES; WEAK; OPERATORS;
D O I
10.1016/j.amc.2010.02.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an iterative process which converges strongly to a common element of set of common fixed points of countably infinite family of closed relatively quasi-nonexpansive mappings, the solution set of generalized equilibrium problem and the solution set of the variational inequality problem for a gamma-inverse strongly monotone mapping in Banach spaces. Our theorems improve, generalize, unify and extend several results recently announced. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3439 / 3449
页数:11
相关论文
共 20 条
[1]  
Alber Y.I., 1996, LECT NOTES PURE APPL, P15
[2]  
Blum E., 1994, Math. Stud., V63, P127
[3]  
Butnariu D., 2001, J APPL ANAL, V7, P151, DOI DOI 10.1515/JAA.2001.151
[4]   EXAMPLE CONCERNING FIXED-POINTS [J].
GENEL, A ;
LINDENSTRAUSS, J .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (01) :81-92
[5]  
Kamimura SJ, 2003, SIAM J OPTIMIZ, V13, P938
[6]  
KOHASAKA F, 2004, ABSTR APPL ANAL, V3, P239
[7]   A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive mapping [J].
Kumam, Poom .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2008, 2 (04) :1245-1255
[8]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510
[9]   Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups [J].
Nakajo, K ;
Takahashi, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :372-379
[10]   Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces [J].
Qin, Xiaolong ;
Cho, Yeol Je ;
Kang, Shin Min .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) :20-30