Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source

被引:26
作者
Liu, Ji [1 ]
Zheng, Jiashan [2 ]
Wang, Yifu [1 ,3 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Ludong Univ, Sch Math & Informat, Yantai 264039, Peoples R China
[3] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 02期
关键词
Chemotaxis; Haptotaxis; Quasilinear; Boundedness; Logistic source; TIME BLOW-UP; KELLER-SEGEL SYSTEM; GLOBAL EXISTENCE; MODELING CHEMOTAXIS; ASYMPTOTIC-BEHAVIOR; CANCER INVASION; CELL INVASION; TISSUE; ATTRACTOR; EQUATIONS;
D O I
10.1007/s00033-016-0620-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the quasilinear chemotaxis-haptotaxis system {u(t) = del . (D(u)del u) - del . (S-1(u)del v) - del . (S-2(u)del w) + uf(u, w), x is an element of Omega, t > 0, v(t) = Delta v - v + u, x is an element of Omega, t > 0, w(t) = -vw, x is an element of Omega, t > 0 in a bounded smooth domain Omega subset of R-n (n >= 1) under zero-flux boundary conditions, where the nonlinearities D, S1 and S2 are assumed to generalize the prototypes D(u) = CD(u + 1)(m-1), S-1(u) = C(S1)u(u + 1)(q1-1) and S-2(u) = C(S2)u(u + 1)(q2-1) with C-D, C-S1, C-S2 > 0, m, q(1), q(2) is an element of R and f(u, w) is an element of C-1([0,+ infinity) x [0,+ infinity)) fulfills f(u, w) <= r - bu for all u >= 0 and w >= 0, where r > 0, b> 0. Assuming nonnegative initial data u(0)(x) is an element of W-1,W-infinity(Omega), v(0)(x) is an element of W-1,W-infinity(Omega) and w(0)(x) is an element of C-2,C-alpha(Omega) O) for some a. (0, 1), we prove that (i) for n <= 2, if max{q(1), q(2)} < m+ 2/n - 1, then (star) has a unique nonnegative classical solution which is globally bounded, (ii) for n > 2, if max{q(1), q(2)} < m+ 2/n - 1 and m > 2 - 2/n or max{q(1), q(2)} < m + 2/n - 1 and m <= 1, then (star) has a unique nonnegative classical solution which is globally bounded.
引用
收藏
页数:33
相关论文
共 44 条
[1]  
Alikakos Nicholas D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
[2]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[3]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[4]   Volume effects in the Keller-Segel model: energy estimates preventing blow-up [J].
Calvez, Vincent ;
Carrillo, Jose A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02) :155-175
[5]  
Cao X., 2015, ARXIV150105383
[6]   Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system [J].
Chaplain, MAJ ;
Lolas, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11) :1685-1734
[7]  
Chaplain MAJ, 2003, MATH COMP BIOL SER, P269
[8]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[9]   Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (5-6) :237-242
[10]  
Herrero M.A., 1997, ANN SCUOLA NORM-SCI, V24, P633