Generation of Negative Air Ions by Use of Piezoelectric Cold Plasma Generator

被引:3
作者
Korzec, Dariusz [1 ]
Neuwirth, Daniel [1 ]
Nettesheim, Stefan [1 ]
机构
[1] Relyon Plasma GmbH, Osterhofener Str 6, D-93055 Regensburg, Germany
关键词
negative air ions; atmospheric pressure plasma; piezoelectric direct discharge; ozone; SURFACE-DISCHARGE MICROPLASMA; ABSORPTION CROSS-SECTIONS; INDOOR ENVIRONMENTS; AEROSOL-PARTICLES; OZONE; IONIZATION; CONTAMINANTS; CHARGER;
D O I
10.3390/plasma4030029
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The negative air ions (NAI) are used for the removal of particles or droplets from the air. In this study, three types of piezoelectric cold plasma generators (PCPG), in combination with cylindrical electrostatic ion filters, are applied for NAI production. The high voltage on the filter cylinder is induced by the electric field from the piezoelectric transformer of the PCPG. To achieve the dc bias, the cylinder of the electrostatic filter is connected to the ground over ultrafast switching diodes. The ion concentrations are measured for different airflows, PCPG powers, and electrostatic filter geometries. The NAI concentration in the order of magnitude of 10(7) cm(-3), and a negative-to-positive ion concentration ratio of over 200 is reached. The production of ozone is evaluated and the PCPG configuration with a minimum ozone production rate is proposed. The ozone concentration below 60 ppb is reached in the airflow of 90 m(3)/h.
引用
收藏
页数:9
相关论文
共 36 条
  • [1] SIMPLE EVALUATION METHOD OF BIPOLAR DIFFUSION CHARGING OF AEROSOL-PARTICLES AND ITS APPLICATION TO SMOKE DETECTORS
    ADACHI, M
    OKUYAMA, K
    KOUSAKA, Y
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 1987, 7 (02) : 217 - 229
  • [2] Plasma decay in air and O2 after a high-voltage nanosecond discharge
    Aleksandrov, N. L.
    Anokhin, E. M.
    Kindysheva, S. V.
    Kirpichnikov, A. A.
    Kosarev, I. N.
    Nudnova, M. M.
    Starikovskaia, S. M.
    Starikovskii, A. Yu
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (25)
  • [3] Barn P., 2010, RESIDENTIAL AIR CLEA
  • [4] Beattie J. K., 2016, ATMOS CHEM PHYS DISC, V2016, P1, DOI [10.5194/acp-2015-892, DOI 10.5194/ACP-2015-892]
  • [5] MECHANISM OF THE GAS PHASE, THERMAL DECOMPOSITION OF OZONE
    BENSON, SW
    AXWORTHY, AE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1957, 26 (06) : 1718 - 1726
  • [6] Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers
    Britigan, N
    Alshawa, A
    Nizkorodov, SA
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2006, 56 (05) : 601 - 610
  • [7] On the ionization of air for removal of noxious effluvia (Air ionization of indoor environments for control of volatile and particulate contaminants with nonthermal plasmas generated by dielectric-barrier discharge)
    Daniels, SL
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (04) : 1471 - 1481
  • [8] OZONE UV SPECTROSCOPY .1. ABSORPTION CROSS-SECTIONS AT ROOM-TEMPERATURE
    DAUMONT, D
    BRION, J
    CHARBONNIER, J
    MALICET, J
    [J]. JOURNAL OF ATMOSPHERIC CHEMISTRY, 1992, 15 (02) : 145 - 155
  • [9] Inactivation of bacteria using dc corona discharge: role of ions and humidity
    Dobrynin, Danil
    Friedman, Gary
    Fridman, Alexander
    Starikovskiy, Andrey
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [10] OZONE SYNTHESIS FROM OXYGEN IN DIELECTRIC BARRIER DISCHARGES
    ELIASSON, B
    HIRTH, M
    KOGELSCHATZ, U
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1987, 20 (11) : 1421 - 1437