(4+N)-dimensional elastic manifolds in random media: A renormalization-group analysis

被引:20
作者
Bucheli, H [1 ]
Wagner, OS
Geshkenbein, VB
Larkin, AI
Blatter, G
机构
[1] ETH Honggerberg, CH-8093 Zurich, Switzerland
[2] LD Landau Theoret Phys Inst, Moscow 117940, Russia
[3] Univ Minnesota, Inst Theoret Phys, Minneapolis, MN 55455 USA
来源
PHYSICAL REVIEW B | 1998年 / 57卷 / 13期
关键词
D O I
10.1103/PhysRevB.57.7642
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by the problem of weak collective pinning of vortex lattices in high-temperature superconductors, we study the model system of a four-dimensional elastic manifold with N transverse degrees of freedom (4 + N model) in a quenched disorder environment. We assume the disorder to be weak and short-range correlated, and neglect thermal effects. Using a real-space functional renormalization-group (FRG) approach, we derive a RG equation for the pinning-energy correlator up to a two-loop correction. The solution of this equation allows us to calculate the size R-c of collectively pinned elastic domains as well as the critical force F-c, i.e., the smallest external force needed to drive these domains. We find R-c proportional to delta(alpha 2) exp(alpha(1)/delta(p)) and F-c proportional to delta(p)(-2 alpha 2) exp(-2 alpha(1)/delta(p)), where delta(p) much less than 1 parametrizes the disorder strength alpha(1) = (2/pi)(N/2)8 pi(2)/(N + 8), and alpha(2) = 2(5N + 22)/(N + 8)(2). In contrast to lowest-order perturbation calculations which we briefly review, we thus arrive at determining both alpha(1) (one loop) and alpha(2) (two loop).
引用
收藏
页码:7642 / 7652
页数:11
相关论文
共 19 条
  • [11] LARKIN AI, 1970, ZH EKSP TEOR FIZ, V31, P784
  • [12] LEBELLAC M, 1994, QUANTUM STAT FIELD T
  • [13] Leschhorn H, 1997, ANN PHYS-LEIPZIG, V6, P1, DOI 10.1002/andp.19975090102
  • [14] INTERFACES IN A RANDOM MEDIUM AND REPLICA SYMMETRY-BREAKING
    MEZARD, M
    PARISI, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (23): : L1229 - L1234
  • [15] MEZARD M, 1991, J PHYS I, V1, P908
  • [16] NATTERMANN T, 1992, J PHYS II, V2, P1483, DOI 10.1051/jp2:1992214
  • [17] THEORY OF VORTEX MOTION IN AN INHOMOGENEOUS SUPERCONDUCTING FILM
    SCHMID, A
    HAUGER, W
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 1973, 11 (5-6) : 667 - 685
  • [18] Renormalization group analysis of weak collective pinning
    Wagner, OS
    Blatter, G
    Bucheli, H
    Geshkenbein, VB
    Larkin, AI
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 1815 - 1816
  • [19] WAGNER OS, UNPUB