Direct sums of renormings of l1 and the fixed point property

被引:4
作者
Dowling, P. N. [2 ]
Lin, Pei-Kee [3 ]
Turett, B. [1 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[2] Miami Univ, Dept Math, Oxford, OH 45056 USA
[3] Univ Memphis, Dept Math, Memphis, TN 38152 USA
关键词
Renorming; Fixed point property; NONEXPANSIVE-MAPPINGS;
D O I
10.1016/j.na.2010.03.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let gamma(n) be an increasing sequence in (0, 1) that converges to 1, and let parallel to vertical bar.parallel to vertical bar be the equivalent norm of l(1) defined by parallel to vertical bar(a(k))parallel to vertical bar = sup(n is an element of N) gamma(n) Sigma(infinity)(k=n) |a(k)|. In this article, we show that for any m > 1, the space (Sigma(m)(l-1)circle plus(l(1), parallel to vertical bar.parallel to vertical bar)(1) is not isometrically isomorphic to any subspace of (l(1), parallel to vertical bar.parallel to vertical bar) and it has the fixed point property. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:591 / 599
页数:9
相关论文
共 8 条
[1]  
Dowling PN, 2001, HANDBOOK OF METRIC FIXED POINT THEORY, P269
[2]  
FETTER H, COMMUNICATION
[3]  
Kirk W.A., 2001, Handbook of Metric Fixed Point Theory
[4]  
KIRK WA, 1984, HOUSTON J MATH, V10, P207
[5]   There is an equivalent norm on l1 that has the fixed point property [J].
Lin, Pei-Kee .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (08) :2303-2308
[6]  
LIN PK, RENORMING E1 FIXED P
[7]  
MAUREY B, 1980, SEM AN FONCT PAR
[8]   ON FIXED-POINT THEOREMS OF NONEXPANSIVE-MAPPINGS IN PRODUCT-SPACES [J].
TAN, KK ;
XU, HK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (04) :983-989