On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi

被引:20
|
作者
Franco Cairo, Joao Paulo L. [1 ,2 ,3 ]
Cannella, David [4 ]
Oliveira, Leandro C. [5 ]
Goncalves, Thiago A. [1 ,3 ]
Rubio, Marcelo V. [1 ]
Terrasan, Cesar R. F. [1 ]
Tramontina, Robson [3 ]
Mofatto, Luciana S. [6 ]
Carazzolle, Marcelo F. [6 ]
Garcia, Wanius [7 ]
Felby, Claus [8 ]
Damasio, Andre [1 ,9 ]
Walton, Paul H. [2 ]
Squina, Fabio [3 ]
机构
[1] Univ Estadual Campinas, Inst Biol, Dept Biochem & Tissue Biol, Campinas, SP, Brazil
[2] Univ York, Dept Chem, York, N Yorkshire, England
[3] Univ Sorocaba UNISO, Programa Proc Tecnol & Ambientais, Sorocaba, SP, Brazil
[4] Univ Libre Bruxelles, Interfac Sch Bioengineers, PhotoBioCatalysis Unit, Crop Prod & Biocatalysis CPBL,Biomass Transformat, Brussels, Belgium
[5] Sao Paulo State Univ UNESP, Dept Phys, Inst Biosci Humanities & Exact Sci, Sao Jose Do Rio Preto, SP, Brazil
[6] Univ Estadual Campinas, Inst Biol, Dept Genet Evolut & Bioagents, Campinas, SP, Brazil
[7] Univ Fed ABC UFABC, Ctr Ciencias Nat & Humanas, Santo Andre, SP, Brazil
[8] Univ Copenhagen, Dept Geosci & Nat Resource Management, Fac Sci, Frederiksberg C, Denmark
[9] Sao Paulo Fungal Grp, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
LPMOs; Termites; AA15; CAZymes; Chitinases; Chitin; LYTIC POLYSACCHARIDE MONOOXYGENASES; GLYCOSIDE HYDROLASE FAMILY; GENE-EXPRESSION; MOLECULAR-BASIS; LIGNOCELLULOSE; CELLULOSE; COPPER; DIVERSITY; OXIDATION; INSIGHTS;
D O I
10.1016/j.jinorgbio.2020.111316
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which catalyze the oxidative cleavage of polysaccharides. LPMOs belonging to family 15 in the Auxiliary Activity (AA) class from the Carbohydrate-Active Enzyme database are found widespread across the Tree of Life, including viruses, algae, oomycetes and animals. Recently, two AA15s from the firebrat Thermobia domestica were reported to have oxidative activity, one towards cellulose or chitin and the other towards chitin, signalling that AA15 LPMOs from insects potentially have different biochemical functions. Herein, we report the identification and characterization of two family AA15 members from the lower termite Coptotermes gestroi. Addition of Cu(II) to CgAA15a or CgAA15b had a thermostabilizing effect on both. Using ascorbate and O2 as co-substrates, CgAA15a and CgAA15b were able to oxidize chitin, but showed no activity on celluloses, xylan, xyloglucan and starch. Structural models indicate that the LPMOs from C. gestroi (CgAA15a/CgAA15b) have a similar fold but exhibit key differences in the catalytic site residues when compared to the cellulose/chitin-active LPMO from T. domestica (TdAA15a), especially the presence of a non-coordinating phenylalanine nearby the Cu ion in CgAA15a/b, which appears as a tyrosine in the active site of TdAA15a. Despite the overall similarity in protein folds, however, mutation of the active site phenylalanine in CgAA15a to a tyrosine did not expanded the enzymatic specificity from chitin to cellulose. Our data show that CgAA15a/b enzymes are likely not involved in lignocellulose digestion but might play a role in termite developmental processes as well as on chitin and nitrogen metabolisms.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Effect of lignin fractions isolated from different biomass sources on cellulose oxidation by fungal lytic polysaccharide monooxygenases
    Muraleedharan, Madhu Nair
    Zouraris, Dimitrios
    Karantonis, Antonis
    Topakas, Evangelos
    Sandgren, Mats
    Rova, Ulrika
    Christakopoulos, Paul
    Karnaouri, Anthi
    BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [42] Activity and substrate specificity of lytic polysaccharide monooxygenases: An ATR FTIR-based sensitive assay tested on a novel species from Pseudomonas putida
    Serra, Ilenia
    Piccinini, Daniele
    Paradisi, Alessandro
    Ciano, Luisa
    Bellei, Marzia
    Bortolotti, Carlo Augusto
    Battistuzzi, Gianantonio
    Sola, Marco
    Walton, Paul H.
    Di Rocco, Giulia
    PROTEIN SCIENCE, 2022, 31 (03) : 591 - 601
  • [43] Lytic Polysaccharide Monooxygenases from Serpula lacrymans as Enzyme Cocktail Additive for Efficient Lignocellulose Degradation
    Li, Fei
    Liu, Yang
    Zhao, Honglu
    Liu, Xuan
    Yu, Hongbo
    FERMENTATION-BASEL, 2023, 9 (06):
  • [44] Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity
    Frommhagen, Matthias
    Koetsier, Martijn J.
    Westphal, Adrie H.
    Visser, Jaap
    Hinz, Sandra W. A.
    Vincken, Jean-Paul
    van Berkel, Willem J. H.
    Kabel, Mirjam A.
    Gruppen, Harry
    BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
  • [45] Comparative Study of Two Chitin-Active and Two Cellulose-Active AA10-Type Lytic Polysaccharide Monooxygenases
    Forsberg, Zarah
    Rohr, Asmund Kjendseth
    Mekasha, Sophanit
    Andersson, K. Kristoff
    Eijsink, Vincent G. H.
    Vaaje-Kolstad, Gustav
    Sorlie, Morten
    BIOCHEMISTRY, 2014, 53 (10) : 1647 - 1656
  • [46] Identification and characterization of a novel AA9-type lytic polysaccharide monooxygenase from a bagasse metagenome
    Bunterngsook, Benjarat
    Mhuantong, Wuttichai
    Kanokratana, Pattanop
    Iseki, Yu
    Watanabe, Takashi
    Champreda, Verawat
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 105 (01) : 197 - 210
  • [47] Insights from semi-oriented EPR spectroscopy studies into the interaction of lytic polysaccharide monooxygenases with cellulose
    Ciano, Luisa
    Paradisi, Alessandro
    Hemsworth, Glyn R.
    Tovborg, Morten
    Davies, Gideon J.
    Walton, Paul H.
    DALTON TRANSACTIONS, 2020, 49 (11) : 3413 - 3422
  • [48] Multipoint Precision Binding of Substrate Protects Lytic Polysaccharide Monooxygenases from Self-Destructive Off-Pathway Processes
    Loose, Jennifer S. M.
    Arntzen, Magnus O.
    Bissaro, Bastien
    Ludwig, Roland
    Eijsink, Vincent G. H.
    Vaaje-Kolstad, Gustav
    BIOCHEMISTRY, 2018, 57 (28) : 4114 - 4124
  • [49] Oxidative modification of cellulosic fibres by lytic polysaccharide monooxygenase AA9A from Trichoderma reesei
    Marjamaa, Kaisa
    Rahikainen, Jenni
    Karjalainen, Marika
    Maiorova, Natalia
    Holopainen-Mantila, Ulla
    Molinier, Matthieu
    Aro, Nina
    Nygren, Heli
    Mikkelson, Atte
    Koivula, Anu
    Kruus, Kristiina
    CELLULOSE, 2022, 29 (11) : 6021 - 6038
  • [50] The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate
    Riin Kont
    Ville Pihlajaniemi
    Anna S. Borisova
    Nina Aro
    Kaisa Marjamaa
    Judith Loogen
    Jochen Büchs
    Vincent G. H. Eijsink
    Kristiina Kruus
    Priit Väljamäe
    Biotechnology for Biofuels, 12