Unsupervised Learning of Generalized Gamma Mixture Model With Application in Statistical Modeling of High-Resolution SAR Images

被引:43
作者
Li, Heng-Chao [1 ,2 ]
Krylov, Vladimir A. [3 ,4 ]
Fan, Ping-Zhi [1 ]
Zerubia, Josiane [5 ]
Emery, William J. [2 ]
机构
[1] Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu 610031, Peoples R China
[2] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
[3] INRIA, Ayin Team, F-06902 Sophia Antipolis, France
[4] Univ Genoa, Dept Elect Elect & Telecommun Engn & Naval Archit, I-16145 Genoa, Italy
[5] INRIA, Ayin Res Team, F-06902 Sophia Antipolis, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 04期
基金
中国国家自然科学基金;
关键词
Expectation conditional maximization (ECM) algorithm; finite mixture model (FMM); generalized Gamma distribution (GFD); minimum message length (MML); probability density function (pdf) estimation; synthetic aperture radar (SAR) images; unsupervised learning; MAXIMUM-LIKELIHOOD; IDENTIFIABILITY; CONVERGENCE;
D O I
10.1109/TGRS.2015.2496348
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The accurate statistical modeling of synthetic aperture radar (SAR) images is a crucial problem in the context of effective SAR image processing, interpretation, and application. In this paper, a semi -parametric approach is designed within the framework of finite mixture models based on the generalized Gamma distribution in view of its flexibility and compact form. Specifically, we develop a generalized Gamma mixture model to implement an effective statistical analysis of high-resolution SAR images and prove the identifiability of such mixtures. A low-complexity unsupervised estimation method is derived by combining the proposed histogram-based expectation conditional maximization algorithm and the Figueiredo Jain algorithm. This results in a numerical maximum-likelihood (ML) estimator that can simultaneously determine the ML estimates of component parameters and the optimal number of mixture components. Finally, the state-of-the-art performance of this proposed method is verified by experiments with a wide range of high-resolution SAR images.
引用
收藏
页码:2153 / 2170
页数:18
相关论文
共 42 条
[1]  
Abramowitz M., 1970, Handbook of Mathematical Functions
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]   A Textural-Contextual Model for Unsupervised Segmentation of Multipolarization Synthetic Aperture Radar Images [J].
Akbari, Vahid ;
Doulgeris, Anthony P. ;
Moser, Gabriele ;
Eltoft, Torbjorn ;
Anfinsen, Stian N. ;
Serpico, Sebastiano B. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (04) :2442-2453
[4]  
[Anonymous], 2002, Numerical Recipes in C++: The Art of Scientific Computing
[5]   A new condition for identifiability of finite mixture distributions [J].
Atienza, N. ;
Garcia-Heras, J. ;
Munoz-Pichardo, J. M. .
METRIKA, 2006, 63 (02) :215-221
[6]   MDL, penalized likelihood, and statistical risk [J].
Barron, Andrew R. ;
Huang, Cong ;
Li, Jonathan Q. ;
Luo, Xi .
2008 IEEE INFORMATION THEORY WORKSHOP, 2008, :247-+
[7]   Finding overlapping components with MML [J].
Baxter, RA ;
Oliver, JJ .
STATISTICS AND COMPUTING, 2000, 10 (01) :5-16
[8]  
Bernardo J. M., 2009, BAYESIAN THEORY, V405
[9]   Assessing a mixture model for clustering with the integrated completed likelihood [J].
Biernacki, C ;
Celeux, G ;
Govaert, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (07) :719-725
[10]  
Bilmes J., 1997, ICSITR97021 U CAL BE