FURTHER DEVELOPMENT OF CHEBYSHEV TYPE INEQUALITIES FOR SUGENO INTEGRALS AND T-(S-)EVALUATORS

被引:0
作者
Agahi, Hamzeh [1 ]
Mesiar, Radko [2 ,3 ]
Yao Ouyang [4 ]
机构
[1] Shahid Bahonar Univ Kerman, Fac Math & Comp Sci, Dept Stat, Kerman, Iran
[2] Slovak Tech Univ, Fac Civil Engn, Dept Math & Descript Geometry, SK-81368 Bratislava, Slovakia
[3] Acad Sci Czech Republ, Inst Informat Theory & Automat, CZ-18208 Prague, Czech Republic
[4] Huzhou Teachers Coll, Fac Sci, Huzhou 313000, Zhejiang, Peoples R China
关键词
Sugeno integral; fuzzy measure; comonotone functions; Chebyshev's inequality; t-norm; t-conorm; T-(S-)evaluators; FUZZY INTEGRALS; MONOTONE-FUNCTIONS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper further development of Chebyshev type inequalities for Sugeno integrals based on an aggregation function H and a scale transformation phi is given. Consequences for T-(S-)evaluators are established.
引用
收藏
页码:83 / 95
页数:13
相关论文
共 26 条
[1]  
AGAHI H, J UNCERTAIN IN PRESS
[2]   General Minkowski type inequalities for Sugeno integrals [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Yao Ouyang .
FUZZY SETS AND SYSTEMS, 2010, 161 (05) :708-715
[3]   New general extensions of Chebyshev type inequalities for Sugeno integrals [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Yao Ouyang .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2009, 51 (01) :135-140
[4]  
[Anonymous], 1992, Fuzzy measure theory
[5]  
BENVENUTI P, 2002, HDB MEASURE THEORY, V2, P1329
[6]   T-evaluators and S-evaluators [J].
Bodjanova, Slavka ;
Kalina, Martin .
FUZZY SETS AND SYSTEMS, 2009, 160 (14) :1965-1983
[7]   A Chebyshev type inequality for fuzzy integrals [J].
Flores-Franulic, A. ;
Roman-Flores, H. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) :1178-1184
[8]  
Grabisch M., 2009, AGGREGATIONS FUNCTIO
[9]  
Klement E.P., 2000, STUDIA LOGICA LIB, V8
[10]   Measure-based aggregation operators [J].
Klement, EP ;
Mesiar, R ;
Pap, E .
FUZZY SETS AND SYSTEMS, 2004, 142 (01) :3-14