Walk Regular Digraphs

被引:0
作者
Liu, Wen [1 ]
Lin, Jing [2 ]
机构
[1] Hebei Normal Univ, Math & Inf Coll, Shijiazhuang 050016, Peoples R China
[2] Beijing Dazing 5 High Sch, Beijing 102600, Peoples R China
关键词
ADJACENCY POLYNOMIALS; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A strongly connected digraph Gamma is said to be walk regular if for any nonnegative integer l and any vertex u of Gamma, the number of circuits of length l containing u depends only on l. This family of digraphs is a directed version of walk regular graphs. In this paper, we discuss some basic properties of walk regular digraphs.
引用
收藏
页码:97 / 102
页数:6
相关论文
共 50 条
  • [21] Jumping robbers in digraphs
    Puchala, Bernd
    Rabinovich, Roman
    THEORETICAL COMPUTER SCIENCE, 2016, 655 : 58 - 77
  • [22] Recolouring reflexive digraphs
    Brewster, Richard C.
    Lee, Jae-baek
    Siggers, Mark
    DISCRETE MATHEMATICS, 2018, 341 (06) : 1708 - 1721
  • [23] Irregularity Notions for Digraphs
    Bensmail, Julien
    Filasto, Thomas
    Hocquard, Herve
    Marcille, Clara
    GRAPHS AND COMBINATORICS, 2025, 41 (03)
  • [24] Subdivisions of digraphs in tournaments
    Girao, Antonio
    Popielarz, Kamil
    Snyder, Richard
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 : 266 - 285
  • [25] The Wiener Index of Digraphs
    Wang, Kun
    Ning, Wenjie
    Pan, Xiangfeng
    ARS COMBINATORIA, 2020, 150 : 85 - 98
  • [26] λ′-Optimality of Bipartite Digraphs
    Chen, Xing
    Liu, Juan
    Meng, Jixiang
    INFORMATION PROCESSING LETTERS, 2012, 112 (17-18) : 701 - 705
  • [27] Oriented trees in digraphs
    Addario-Berry, Louigi
    Havet, Frederic
    Sales, Claudia Linhares
    Reed, Bruce
    Thomasse, Stephan
    DISCRETE MATHEMATICS, 2013, 313 (08) : 967 - 974
  • [28] Divisible Design Digraphs
    Crnkovic, Dean
    Kharaghani, Hadi
    ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 43 - 60
  • [29] Random Threshold Digraphs
    Reilly, Elizabeth
    Scheinerman, Edward
    Zhang, Yiguang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (02)
  • [30] Distance and size in digraphs
    Dankelmann, Peter
    DISCRETE MATHEMATICS, 2015, 338 (01) : 144 - 148