Observation of "Frozen-Phase" Propagation of THz Pulses in a Dispersive Optical System

被引:8
作者
Lu, Yao [1 ,2 ]
Wu, Qiang [1 ,2 ,3 ]
Xiong, Hao [1 ,2 ]
Huang, Song [1 ,2 ]
Pan, Chongpei [1 ,2 ]
Zhang, Bin [4 ]
Qi, Jiwei [1 ,2 ,3 ]
Chen, Zhigang [1 ,2 ,3 ]
Xu, Jingjun [1 ,2 ,3 ]
机构
[1] Nankai Univ, Key Lab Weak Light Nonlinear Photon, Minist Educ, TEDA Inst Appl Phys, Tianjin 300457, Peoples R China
[2] Nankai Univ, Sch Phys, Tianjin 300457, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
dispersive optical systems; first‐ order dispersion cancellation; phase‐ invariant propagation; terahertz pulses; ultrafast phenomena; SLOW LIGHT; FREQUENCY; WAVE; SUBWAVELENGTH; GENERATION; MODULATION; RESOLUTION; FIELDS; MODES;
D O I
10.1002/lpor.202000591
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dispersion occurs naturally in many wave systems. So far, a variety of techniques have been proposed and demonstrated to compensate the second-order (group-velocity) dispersion, such as dispersion management and nonlinear soliton formation, yet it is commonly believed that the first-order dispersion (FOD) is less amenable and cannot be eliminated. In this work, it is shown that a phase-invariant propagation of THz pulses, namely the "frozen-phase" propagation, can be realized by a complete cancellation of the FOD, achieved by implementing a synchronized THz moving source with a locked initial phase. The dynamic generation and propagation process of the THz pulses is examined directly by a time-resolved imaging system. To the best of authors' knowledge, this represents the first demonstration of the "frozen-phase" propagation of a light pulse in dispersive optical systems.
引用
收藏
页数:6
相关论文
共 38 条
[21]  
Linden, 2004, PHYS REV A, V69
[22]   Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides [J].
Lu, Yao ;
Wu, Qiang ;
Zhang, Qi ;
Wang, Ri-De ;
Zhang, Bin ;
Zhao, Wen-Juan ;
Zhang, Deng ;
Xiong, Hao ;
Yang, Cheng-Liang ;
Qi, Ji-Wei ;
Pan, Chong-Pei ;
Xu, Jing-Jun .
FRONTIERS OF PHYSICS, 2019, 14 (04)
[23]  
Luk'yanchuk B, 2010, NAT MATER, V9, P707, DOI [10.1038/NMAT2810, 10.1038/nmat2810]
[24]   EXPERIMENTAL-OBSERVATION OF PICOSECOND PULSE NARROWING AND SOLITONS IN OPTICAL FIBERS [J].
MOLLENAUER, LF ;
STOLEN, RH ;
GORDON, JP .
PHYSICAL REVIEW LETTERS, 1980, 45 (13) :1095-1098
[25]   Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons [J].
Nagali, Eleonora ;
Sciarrino, Fabio ;
De Martini, Francesco ;
Marrucci, Lorenzo ;
Piccirillo, Bruno ;
Karimi, Ebrahim ;
Santamato, Enrico .
PHYSICAL REVIEW LETTERS, 2009, 103 (01)
[26]   ABSORPTION AND FLUORESCENCE IN FREQUENCY-MODULATED FIELDS UNDER CONDITIONS OF STRONG MODULATION AND SATURATION [J].
NAYAK, N ;
AGARWAL, GS .
PHYSICAL REVIEW A, 1985, 31 (05) :3175-3182
[27]   Mechanical-sensorless permanent-magnet motor drive using relative phase information of harmonic currents caused by frequency-modulated three-phase PWM carriers [J].
Noguchi, T ;
Kohno, S .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2003, 39 (04) :1085-1092
[28]   0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography [J].
Okano, Masayuki ;
Lim, Hwan Hong ;
Okamoto, Ryo ;
Nishizawa, Norihiko ;
Kurimura, Sunao ;
Takeuchi, Shigeki .
SCIENTIFIC REPORTS, 2015, 5
[29]   Tunable all-optical delays via Brillouin slow light in an optical fiber [J].
Okawachi, Y ;
Bigelow, MS ;
Sharping, JE ;
Zhu, ZM ;
Schweinsberg, A ;
Gauthier, DJ ;
Boyd, RW ;
Gaeta, AL .
PHYSICAL REVIEW LETTERS, 2005, 94 (15)
[30]   On-chip noninterference angular momentum multiplexing of broadband light [J].
Ren, Haoran ;
Li, Xiangping ;
Zhang, Qiming ;
Gu, Min .
SCIENCE, 2016, 352 (6287) :805-809