On a class of semilinear nonclassical fractional wave equations with logarithmic nonlinearity

被引:5
作者
Vo Van, Au [1 ,2 ]
Thi, Kim Van Ho [3 ]
Nguyen, Anh Tuan [3 ]
机构
[1] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City, Vietnam
[2] Duy Tan Univ, Fac Nat Sci, Da Nang, Vietnam
[3] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
关键词
blow‐ up; fractional calculus; nonlinear problem; well‐ posedness; ASYMPTOTIC-BEHAVIOR; DIFFUSION-EQUATIONS; GLOBAL EXISTENCE; BLOW-UP; REGULARITY; MODELS;
D O I
10.1002/mma.7466
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial boundary value problem for time-fractional subdiffusive equations with Caputo derivative. Our problem has many applications in population dynamics. The source function is given in the logarithmic form. We examine the existence, uniqueness of local solutions, and their ability to continue to a maximal interval of existence. The main tool and analysis here are of applying some Sobolev embedding and some fixed point theorems.
引用
收藏
页码:11022 / 11045
页数:24
相关论文
共 43 条
  • [1] A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS
    Acosta, Gabriel
    Pablo Borthagaray, Juan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) : 472 - 495
  • [2] Allouba H, 2001, ANN PROBAB, V29, P1780
  • [3] [Anonymous], 1994, Int. Math. Res. Not. IMRN
  • [4] Existence and stability of standing waves for nonlinear fractional Schrodinger equation with logarithmic nonlinearity
    Ardila, Alex H.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 155 : 52 - 64
  • [5] Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations
    Arrieta, JM
    Carvalho, AN
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (01) : 285 - 310
  • [6] INFLATIONARY MODELS WITH LOGARITHMIC POTENTIALS
    BARROW, JD
    PARSONS, P
    [J]. PHYSICAL REVIEW D, 1995, 52 (10): : 5576 - 5587
  • [7] EXISTENCE, UNIQUENESS AND ASYMPTOTIC BEHAVIOUR FOR FRACTIONAL POROUS MEDIUM EQUATIONS ON BOUNDED DOMAINS
    Bonforte, Matteo
    Sire, Yannick
    Luis Vaiquez, Juan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (12) : 5725 - 5767
  • [8] Attractors for impulsive non-autonomous dynamical systems and their relations
    Bonotto, E. M.
    Bortolan, M. C.
    Caraballo, T.
    Collegari, R.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (06) : 3524 - 3550
  • [9] Fractional elliptic equations, Caccioppoli estimates and regularity
    Caffarelli, Luis A.
    Stinga, Pablo Raul
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (03): : 767 - 807
  • [10] ASYMPTOTIC BEHAVIOUR OF A NON-CLASSICAL AND NON-AUTONOMOUS DIFFUSION EQUATION CONTAINING SOME HEREDITARY CHARACTERISTIC
    Caraballo, Tomas
    Marquez-Duran, Antonio M.
    Rivero, Felipe
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (05): : 1817 - 1833