Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features

被引:91
作者
Masjedi, Ali [1 ]
Zoej, Mohammad Javad Valadan [1 ]
Maghsoudi, Yasser [1 ]
机构
[1] KN Tossi Univ Technol, Fac Geodesy & Geomat Engn, Tehran 1996715433, Iran
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 02期
关键词
Composite kernel; contextual image classification; Markov randomfield (MRF); polarimetric synthetic aperture radar (PolSAR); support vector machine (SVM); texture feature; Wishart distribution; REGION-BASED CLASSIFICATION; GENETIC ALGORITHMS; COMPOSITE KERNELS; SCATTERING MODEL; DECOMPOSITION; MRF; SEGMENTATION; SVM; FRAMEWORK;
D O I
10.1109/TGRS.2015.2469691
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper proposes a novel contextual method for classification of polarimetric synthetic aperture radar data. The method combines support vector machine (SVM) and Wishart classifiers to benefit from both parametric and nonparametric methods. This method computes the energy function of a Markov random field (MRF) in the neighborhoods of the pixel using Wishart distribution. It then relates the Markovian energy-difference function to the SVM classifier. Therefore, the salt-and-pepper effect on the classified map is reduced using a contextual classifier. Moreover, to achieve the full advantage of spatial information, texture features are added into the contextual classification. Texture features are extracted from SPAN images and are added to the SVM classifier. In this paper, two Radarsat-2 polarimetric images acquired in the leaf-off and leaf-on seasons are used from a forest area. Efficient multitemporal information is exploited using composite kernels in SVM. Comparison of the proposed algorithm with the Wishart, Wishart-MRF, SVM, and SVM with composite kernel classifiers shows a 21.72%, 16.17%, 11.29%, and 8.19% improvement in overall accuracy, respectively. Moreover, incorporating texture features into classification results significant increase in the average accuracy in forest species compared with the use of only polarimetric features.
引用
收藏
页码:932 / 943
页数:12
相关论文
共 81 条
[1]   Automatic Mapping of Linear Woody Vegetation Features in Agricultural Landscapes Using Very High Resolution Imagery [J].
Aksoy, Selim ;
Akcay, H. Goekhan ;
Wassenaar, Tom .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01) :511-522
[2]   Volume Scattering Modeling in PolSAR Decompositions: Study of ALOS PALSAR Data Over Boreal Forest [J].
Antropov, Oleg ;
Rauste, Yrjo ;
Hame, Tuomas .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3838-3848
[3]   Fisher distribution for texture modeling of polarimetric SAR data [J].
Bombrun, Lionel ;
Beaulieu, Jean-Marie .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (03) :512-516
[4]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[5]  
Bovolo F, 2005, LECT NOTES COMPUT SC, V3776, P260
[6]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[7]   Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection [J].
Camps-Valls, Gustavo ;
Gomez-Chova, Luis ;
Munoz-Mari, Jordi ;
Rojo-Alvarez, Jose Luis ;
Martinez-Ramon, Manel .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (06) :1822-1835
[8]   Semi-supervised graph-based hyperspectral image classification [J].
Camps-Valls, Gustavo ;
Bandos, Tatyana V. ;
Zhou, Dengyong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3044-3054
[9]   Spatio-Spectral Remote Sensing Image Classification With Graph Kernels [J].
Camps-Valls, Gustavo ;
Shervashidze, Nino ;
Borgwardt, Karsten M. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (04) :741-745
[10]   EM procedures using mean field-like approximations for Markov model-based image segmentation [J].
Celeux, G ;
Forbes, F ;
Peyrard, N .
PATTERN RECOGNITION, 2003, 36 (01) :131-144