Correlating Synthetic Aperture Radar (CoSAR)

被引:9
作者
Lopez-Dekker, Paco [1 ]
Rodriguez-Cassola, Marc [1 ]
De Zan, Francesco [1 ]
Krieger, Gerhard [1 ]
Moreira, Alberto [1 ]
机构
[1] German Aerosp Ctr DLR, Microwaves & Radar Inst, D-82234 Oberpfaffenhofen, Germany
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 04期
关键词
Bistatic radar; ocean currents; sea level; sea surface; synthetic aperture radar; PHASE SYNCHRONIZATION; MODEL FUNCTION; SAR; RADIOMETER; CURRENTS; SYSTEMS; TIME;
D O I
10.1109/TGRS.2015.2498707
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper presents the correlating synthetic aperture radar (CoSAR) technique, a novel radar imaging concept to observe statistical properties of fast decorrelating surfaces. A CoSAR system consists of two radars with a relative motion in the along -track (cross -range) dimension. The spatial autocorrelation function of the scattered signal can be estimated by combining quasi -simultaneously received radar echoes. By virtue of the Van Cittert Zernike theorem, estimates of this autocorrelation function for different relative positions can be processed by generating images of several properties of the scene, including the normalized radar cross section, Doppler velocities, and surface topography. Aside from the geometric performance, a central aspect of this paper is a theoretical derivation of the radiometric performance of CoSAR. The radiometric quality is proportional to the number of independent samples available for the estimation of the spatial correlation, and to the ratio between the CoSAR azimuth resolution and the real -aperture resolution. A CoSAR mission concept is provided where two geosynchronous radar satellites fly at opposing sides of a quasi -circular trajectory. Such a mission could provide bidaily images of the ocean backscatter, mean Doppler, and surface topography at resolutions on the order of 500 m over wide areas.
引用
收藏
页码:2268 / 2284
页数:17
相关论文
共 50 条
[21]   An Advanced Method for Precise ULA SIMO Radar Calibration Utilizing Synthetic Aperture Radar Imaging Artifacts [J].
Braunwarth, Michael ;
Geiss, Johanna ;
Sippel, Erik ;
Vossiek, Martin .
IEEE JOURNAL OF MICROWAVES, 2025, 5 (04) :892-906
[22]   Synthetic Aperture Radar 3-D Polarimetry [J].
Dvorsky, Matthew ;
Al Qaseer, Mohammad Tayeb ;
Zoughi, Reza .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
[23]   Implementation of DBFN Processor for Synthetic Aperture Radar Application [J].
Schrape, Oliver ;
Koczor, Arkadiusz ;
Penkala, Piotr ;
Petrovic, Vladimir ;
Krstic, Milos .
2016 IEEE 19TH INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS (DDECS), 2016, :175-179
[24]   Multi-Mission, Autonomous, Synthetic Aperture Radar [J].
Walls, Thomas J. ;
Wilson, Michael L. ;
Madsen, David ;
Jensen, Mark ;
Sullivan, Stephanie ;
Addario, Michael ;
Hally, Iain .
RADAR SENSOR TECHNOLOGY XVIII, 2014, 9077
[25]   UAV Tomographic Synthetic Aperture Radar for Landmine Detection [J].
Almutiry, Muhannad .
ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2020, 10 (04) :5933-5939
[26]   SARrawSim: Synthetic Aperture Radar Raw Data Simulator [J].
Sahad, Alfonso Jose Zozaya .
SOFTWAREX, 2025, 29
[27]   Lynx: A high-resolution synthetic aperture radar [J].
Tsunoda, SI ;
Pace, F ;
Stence, J ;
Woodring, M ;
Hensley, WH ;
Doerry, AW ;
Walker, BC .
RADAR SENSOR TECHNOLOGY IV, 1999, 3704 :20-27
[28]   New Insights Into Wideband Synthetic Aperture Radar Interferometry [J].
Mustieles-Perez, Victor ;
Kim, Sumin ;
Krieger, Gerhard ;
Villano, Michelangelo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
[29]   DEVELOPMENT OF RADOME FOR CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR [J].
Sumantyo, Josaphat Tetuko Sri .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :4518-4521
[30]   Lynx: A high-resolution synthetic aperture radar [J].
Tsunoda, SI ;
Pace, F ;
Stence, J ;
Woodring, M ;
Hensley, WH ;
Doerry, AW ;
Walker, BC .
2000 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOL 5, 2000, :51-58