Simulating cosmic rays in clusters of galaxies - I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission

被引:118
作者
Pfrommer, C.
Ensslin, T. A.
Springel, V.
Jubelgas, M.
Dolag, K.
机构
[1] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
[2] Max Planck Inst Astrophys, D-85741 Garching, Germany
关键词
radiation mechanisms : general; cosmic rays; galaxies : cluster : general; cooling flows; large-scale structure of Universe; X-rays : galaxies : clusters;
D O I
10.1111/j.1365-2966.2007.11732.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We performed high-resolution simulations of a sample of 14 galaxy clusters that span a mass range from 5 x 10(13) to 2 x 10(15) h(-1) M-circle dot to study the effects of cosmic rays (CRs) on thermal cluster observables such as X-ray emission and the Sunyaev-Zel'dovich effect. We analyse the CR effects on the intra-cluster medium while simultaneously taking into account the cluster's dynamical state as well as the mass of the cluster. The modelling of the CR physics includes adiabatic CR transport processes, injection by supernovae and cosmological structure formation shocks, as well as CR thermalization by the Coulomb interaction and catastrophic losses by hadronic interactions. While the relative pressure contained in CRs within the virial radius is of the order of 2 per cent in our non-radiative simulations, their contribution rises to 32 per cent in our simulations with dissipative gas physics including radiative cooling, star formation and supernova feedback. The relative CR pressure rises towards the outer regions due to a combination of the following effects: CR acceleration is more efficient at the peripheral strong accretion shocks compared to weak central flow shocks, adiabatic compression of a composite of CRs and thermal gas disfavours the CR pressure relative to the thermal pressure due to the softer equation of state of CRs and CR loss processes are more important at the dense centres. Interestingly, in the radiative simulations the relative CR pressure reaches high values of the order of equipartition with the thermal gas in each cluster galaxy due to the fast thermal cooling of gas which diminishes the thermal pressure support relative to that in CRs. This also leads to a lower effective adiabatic index of the composite gas that increases the compressibility of the intra-cluster medium. This effect slightly increases the central density, thermal pressure and the gas fraction. While the X-ray luminosity in low-mass cool core clusters is boosted by up to 40 per cent, the integrated Sunyaev-Zel'dovich effect appears to be remarkably robust and the total flux decrement only slightly reduced by typically 2 per cent. The resolved Sunyaev-Zel'dovich maps, however, show a larger variation with an increased central flux decrement.
引用
收藏
页码:385 / 408
页数:24
相关论文
共 49 条
[1]   Discovery of very-high-energy γ-rays from the Galactic Centre ridge [J].
Aharonian, F ;
Akhperjanian, AG ;
Bazer-Bachi, AR ;
Beilicke, M ;
Benbow, W ;
Berge, D ;
Bernlöhr, K ;
Boisson, C ;
Bolz, O ;
Borrel, V ;
Braun, I ;
Breitling, F ;
Brown, AM ;
Chadwick, PM ;
Chounet, LM ;
Cornils, R ;
Costamante, L ;
Degrange, B ;
Dickinson, HJ ;
Djannati-Ataï, A ;
Drury, LO ;
Dubus, G ;
Emmanoulopoulos, D ;
Espigat, P ;
Feinstein, F ;
Fontaine, G ;
Fuchs, Y ;
Funk, S ;
Gallant, YA ;
Giebels, B ;
Gillessen, S ;
Glicenstein, JF ;
Goret, P ;
Hadjichristidis, C ;
Hauser, D ;
Hauser, M ;
Heinzelmann, G ;
Henri, G ;
Hermann, G ;
Hinton, JA ;
Hofmann, W ;
Holleran, M ;
Horns, D ;
Jacholkowska, A ;
de Jager, OC ;
Khélifi, B ;
Klages, S ;
Komin, N ;
Konopelko, A ;
Latham, IJ .
NATURE, 2006, 439 (7077) :695-698
[2]  
Balogh ML, 2001, MON NOT R ASTRON SOC, V326, P1228, DOI 10.1111/j.1365-2966.2001.04667.x
[3]   The effects of photoionization on galaxy formation -: I.: Model and results at z=0 [J].
Benson, AJ ;
Lacey, CG ;
Baugh, CM ;
Cole, S ;
Frenk, CS .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 333 (01) :156-176
[4]   PARTICLE-ACCELERATION AT ASTROPHYSICAL SHOCKS - A THEORY OF COSMIC-RAY ORIGIN [J].
BLANDFORD, R ;
EICHLER, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 154 (01) :1-75
[5]   Hot and cooled baryons in smoothed particle hydrodynamic simulations of galaxy clusters: physics and numerics [J].
Borgani, S ;
Dolag, K ;
Murante, G ;
Cheng, LM ;
Springel, V ;
Diaferio, A ;
Moscardini, L ;
Tormen, G ;
Tornatore, L ;
Tozzi, P .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 367 (04) :1641-1654
[6]   X-ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation [J].
Borgani, S ;
Murante, G ;
Springel, V ;
Diaferio, A ;
Dolag, K ;
Moscardini, L ;
Tormen, G ;
Tornatore, L ;
Tozzi, P .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 348 (03) :1078-1096
[7]   A two-fluid thermally stable cooling flow model [J].
Cen, RY .
ASTROPHYSICAL JOURNAL, 2005, 620 (01) :191-196
[8]   Convection in galaxy-cluster plasmas driven by active galactic nuclei and cosmic-ray buoyancy [J].
Chandran, BDG .
ASTROPHYSICAL JOURNAL, 2004, 616 (01) :169-177
[9]   Turbulent gas motions in galaxy cluster simulations: The role of smoothed particle hydrodynamics viscosity [J].
Dolag, K ;
Vazza, F ;
Brunetti, G ;
Tormen, G .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 364 (03) :753-772