Adaptive approximation of multi-dimensional irregularly sampled signals with compactly supported radial basis functions

被引:0
作者
Gelas, Arnaud [1 ]
Prost, Remy [1 ]
机构
[1] UCBL, INSA, CREATIS, CNRS UMR 5515,Inserm U630, Lyon, France
来源
2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4 | 2006年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose two novel methods for reconstructing d-dimensional signals with irregular samples, without any restriction on their positions. First approach is an approximation with a fixed number of Compactly Supported Radial Basis Functions (CSRBFs). Whereas the second one is a multiresolution approach with a fixed error bound, in which we only add CSRBFs where the largest local error at the previous level is. For both approaches, we compute an adaptive local support size for each CSRBFs. We prove the effectiveness of our algorithm in two-dimensional cases.
引用
收藏
页码:1091 / +
页数:2
相关论文
共 6 条
[1]   Variational image reconstruction from arbitrarily spaced samples:: A fast multiresolution spline solution [J].
Arigovindan, M ;
Sühling, M ;
Hunziker, P ;
Unser, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (04) :450-460
[2]   Multistep scattered data interpolation using compactly supported radial basis functions [J].
Floater, MS ;
Iske, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) :65-78
[3]  
GELAS A, 2006, P IEEE ICASSP 06 TOU, V3, P388
[4]  
Girosi F., 1993, PRIORS STABILIZERS B
[5]   Multilevel scattered data approximation by adaptive domain decomposition [J].
Iske, A ;
Levesley, J .
NUMERICAL ALGORITHMS, 2005, 39 (1-3) :187-198
[6]  
Wendland H., 1995, Advances in Computational Mathematics, V4, P389, DOI 10.1007/BF02123482