High-efficiency four-wave mixing in low-loss silicon photonic spiral waveguides beyond the singlemode regime

被引:17
作者
Ding, Mingfei [1 ]
Zhang, Ming [1 ,2 ]
Hong, Shihan [1 ]
Zhao, Yi [1 ]
Zhang, Long [1 ]
Wang, Yi [1 ]
Chen, Haitao [1 ]
Yu, Zejie [1 ]
Gao, Shiming [1 ,2 ]
Dai, Daoxin [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, Int Res Ctr Adv Photon, State Key Lab Modern Opt Instrumentat, Zijingang Campus, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Ningbo Res Inst, Ningbo 315100, Peoples R China
关键词
WAVELENGTH CONVERSION; DISPERSION; GENERATION; NITRIDE; DESIGN;
D O I
10.1364/OE.456704
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Low-loss optical waveguides are highly desired for nonlinear photonics such as fourwave mixing (FWM), optical parametric amplification, and pulse shaping. In this work, low-loss silicon photonic spiral waveguides beyond the single-mode regime are proposed and demonstrated for realizing an enhanced FWM process. In particular, the designed 2-mu m-wide silicon photonic waveguides are fabricated with standard foundry processes and have a propagation loss as low as similar to 0.28 dB/cm due to the reduced light-matter interaction at the waveguide sidewalls. In the experiments, strong FWM effect is achieved with a high conversion efficiency of -8.52 dB in a 2-mu m-wide and 20-cm-long silicon photonic waveguide spiral, and eight new wavelengths are generated with the pump power of similar to 80 mW (corresponding to a low power density of similar to 195 mW/mu m(2)). In contrast, the FWM efficiency for the 0.45-mu m-wide waveguide spiral is around -15.4 dB, which is much lower than that for the 2-mu m-wide waveguide spiral. It can be seen that silicon photonics beyond the singlemode regime opens a new avenue for on-chip nonlinear photonics and will bring new opportunities for nonlinear photonic applications. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:16362 / 16373
页数:12
相关论文
共 53 条
[1]   Ultra-low-loss high-aspect-ratio Si3N4 waveguides [J].
Bauters, Jared F. ;
Heck, Martijn J. R. ;
John, Demis ;
Dai, Daoxin ;
Tien, Ming-Chun ;
Barton, Jonathon S. ;
Leinse, Arne ;
Heideman, Rene G. ;
Blumenthal, Daniel J. ;
Bowers, John E. .
OPTICS EXPRESS, 2011, 19 (04) :3163-3174
[2]   Silicon Photonics Circuit Design: Methods, Tools and Challenges [J].
Bogaerts, Wim ;
Chrostowski, Lukas .
LASER & PHOTONICS REVIEWS, 2018, 12 (04)
[3]   Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides [J].
Dimitropoulos, D ;
Jhaveri, R ;
Claps, R ;
Woo, JCS ;
Jalali, B .
APPLIED PHYSICS LETTERS, 2005, 86 (07) :1-3
[4]   Low loss shallow-ridge silicon waveguides [J].
Dong, Po ;
Qian, Wei ;
Liao, Shirong ;
Liang, Hong ;
Kung, Cheng-Chih ;
Feng, Ning-Ning ;
Shafiiha, Roshanak ;
Fong, Joan ;
Feng, Dazeng ;
Krishnamoorthy, Ashok V. ;
Asghari, Mehdi .
OPTICS EXPRESS, 2010, 18 (14) :14474-14479
[5]   Silicon-chip-based ultrafast optical oscilloscope [J].
Foster, Mark A. ;
Salem, Reza ;
Geraghty, David F. ;
Turner-Foster, Amy C. ;
Lipson, Michal ;
Gaeta, Alexander L. .
NATURE, 2008, 456 (7218) :81-U2
[6]   Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides [J].
Foster, Mark A. ;
Turner, Amy C. ;
Salem, Reza ;
Lipson, Michal ;
Gaeta, Alexander L. .
OPTICS EXPRESS, 2007, 15 (20) :12949-12958
[7]   Broad-band optical parametric gain on a silicon photonic chip [J].
Foster, Mark A. ;
Turner, Amy C. ;
Sharping, Jay E. ;
Schmidt, Bradley S. ;
Lipson, Michal ;
Gaeta, Alexander L. .
NATURE, 2006, 441 (7096) :960-963
[8]   Ultrafast waveform compression using a time-domain telescope [J].
Foster, Mark A. ;
Salem, Reza ;
Okawachi, Yoshitomo ;
Turner-Foster, Amy C. ;
Lipson, Michal ;
Gaeta, Alexander L. .
NATURE PHOTONICS, 2009, 3 (10) :581-585
[9]   Four-wave mixing in silicon wire waveguides [J].
Fukuda, H ;
Yamada, K ;
Shoji, T ;
Takahashi, M ;
Tsuchizawa, T ;
Watanabe, T ;
Takahashi, J ;
Itabashi, S .
OPTICS EXPRESS, 2005, 13 (12) :4629-4637
[10]   Photonic-chip-based frequency combs [J].
Gaeta, Alexander L. ;
Lipson, Michal ;
Kippenberg, Tobias J. .
NATURE PHOTONICS, 2019, 13 (03) :158-169