Unobstructedness of Deformations of Weak Fano Manifolds

被引:8
|
作者
Sano, Taro [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1093/imrn/rnt116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a weak Fano manifold has unobstructed deformations. For a general variety, we investigate conditions under which a variety is necessarily obstructed.
引用
收藏
页码:5124 / 5133
页数:10
相关论文
共 50 条
  • [21] On Fano manifolds of large pseudoindex
    Novelli, Carla
    JOURNAL OF ALGEBRA, 2016, 449 : 138 - 162
  • [22] On Banica sheaves and Fano manifolds
    Ballico, E
    Wisniewski, JA
    COMPOSITIO MATHEMATICA, 1996, 102 (03) : 313 - 335
  • [23] FANO MANIFOLDS AND QUADRIC BUNDLES
    WISNIEWSKI, JA
    MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (02) : 261 - 271
  • [24] A BOGOMOLOV UNOBSTRUCTEDNESS THEOREM FOR LOG-SYMPLECTIC MANIFOLDS IN GENERAL POSITION
    Ran, Ziv
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (05) : 1509 - 1519
  • [25] The α-invariant on toric Fano manifolds
    Song, J
    AMERICAN JOURNAL OF MATHEMATICS, 2005, 127 (06) : 1247 - 1259
  • [26] RATIONAL CONNECTIVITY OF FANO MANIFOLDS
    CAMPANA, F
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1992, 25 (05): : 539 - 545
  • [27] Fano generalized Bott manifolds
    Suyamae, Yusuke
    MANUSCRIPTA MATHEMATICA, 2020, 163 (3-4) : 427 - 435
  • [28] Fano schemes and Moishezon manifolds
    Bonavero, L
    Voisin, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (09): : 1019 - 1024
  • [29] Fano generalized Bott manifolds
    Yusuke Suyama
    manuscripta mathematica, 2020, 163 : 427 - 435
  • [30] Flag bundles on Fano manifolds
    Occhetta, Gianluca
    Sola Conde, Luis E.
    Wisniewski, Jaroslaw A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04): : 651 - 669