Unobstructedness of Deformations of Weak Fano Manifolds

被引:8
|
作者
Sano, Taro [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1093/imrn/rnt116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a weak Fano manifold has unobstructed deformations. For a general variety, we investigate conditions under which a variety is necessarily obstructed.
引用
收藏
页码:5124 / 5133
页数:10
相关论文
共 50 条
  • [1] Unobstructedness of deformations of holomorphic maps onto Fano manifolds of Picard number 1
    Hwang, Jun-Muk
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 637 : 193 - 205
  • [2] On deformations of Fano manifolds
    Cao, Huai-Dong
    Sun, Xiaofeng
    Yau, Shing-Tung
    Zhang, Yingying
    MATHEMATISCHE ANNALEN, 2022, 383 (1-2) : 809 - 836
  • [3] On deformations of Fano manifolds
    Huai-Dong Cao
    Xiaofeng Sun
    Shing-Tung Yau
    Yingying Zhang
    Mathematische Annalen, 2022, 383 : 809 - 836
  • [5] On images of weak Fano manifolds
    Fujino, Osamu
    Gongyo, Yoshinori
    MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) : 531 - 544
  • [6] On images of weak Fano manifolds
    Osamu Fujino
    Yoshinori Gongyo
    Mathematische Zeitschrift, 2012, 270 : 531 - 544
  • [7] On Images of Weak Fano Manifolds II
    Fujino, Osamu
    Gongyo, Yoshinori
    ALGEBRAIC AND COMPLEX GEOMETRY, 2014, 71 : 201 - 207
  • [8] Deformations of Calabi-Yau manifolds in Fano toric varieties
    Gilberto Bini
    Donatella Iacono
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1399 - 1412
  • [9] Deformations of Calabi-Yau manifolds in Fano toric varieties
    Bini, Gilberto
    Iacono, Donatella
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1399 - 1412
  • [10] Deformations of weak Q-Fano 3-folds
    Sano, Taro
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (07)