Reduced rank kernel ridge regression

被引:49
作者
Cawley, GC [1 ]
Talbot, NLC [1 ]
机构
[1] Univ E Anglia, Sch Informat Syst, Norwich NR4 7TJ, Norfolk, England
关键词
ridge regression; sparse kernel approximation;
D O I
10.1023/A:1021798002258
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ridge regression is a classical statistical technique that attempts to address the bias-variance trade-off in the design of linear regression models. A reformulation of ridge regression in dual variables permits a non-linear form of ridge regression via the well-known 'kernel trick'. Unfortunately, unlike support vector regression models, the resulting kernel expansion is typically fully dense. In this paper, we introduce a reduced rank kernel ridge regression (RRKRR) algorithm, capable of generating an optimally sparse kernel expansion that is functionally identical to that resulting from conventional kernel ridge regression (KRR). The proposed method is demonstrated to out-perform an alternative sparse kernel ridge regression algorithm on the Motorcycle and Boston Housing benchmarks.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 12 条
[1]  
[Anonymous], [No title captured]
[2]  
BAUDAT G, 2001, P INT JOINT C NEUR N, V3, P1244
[3]   NEURAL NETWORKS AND THE BIAS VARIANCE DILEMMA [J].
GEMAN, S ;
BIENENSTOCK, E ;
DOURSAT, R .
NEURAL COMPUTATION, 1992, 4 (01) :1-58
[4]   HEDONIC HOUSING PRICES AND DEMAND FOR CLEAN-AIR [J].
HARRISON, D ;
RUBINFELD, DL .
JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT, 1978, 5 (01) :81-102
[5]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[6]   INTERPOLATION OF SCATTERED DATA - DISTANCE MATRICES AND CONDITIONALLY POSITIVE DEFINITE FUNCTIONS [J].
MICCHELLI, CA .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (01) :11-22
[7]   A SIMPLEX-METHOD FOR FUNCTION MINIMIZATION [J].
NELDER, JA ;
MEAD, R .
COMPUTER JOURNAL, 1965, 7 (04) :308-313
[8]  
Poggio T, 2001, 2001011 AI MIT
[9]  
SILVERMAN BW, 1985, J ROY STAT SOC B, V47, P1
[10]  
SUYKENS J, 2000, P IEEE INT S CIRC SY, P11757