A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices

被引:39
|
作者
McVerry, Brian [1 ,2 ]
Polasko, Alexandra [3 ]
Rao, Ethan [1 ,2 ]
Haghniaz, Reihaneh [4 ,5 ]
Chen, Dayong [6 ]
He, Na [1 ]
Ramos, Pia [3 ]
Hayashi, Joel [4 ,5 ]
Curson, Paige [1 ]
Wu, Chueh-Yu [7 ]
Bandaru, Praveen [4 ,5 ]
Anderson, Mackenzie [1 ]
Bui, Brandon [2 ]
Sayegh, Aref [8 ,9 ]
Mahendra, Shaily [3 ]
Di Carlo, Dino [7 ]
Kreydin, Evgeniy [8 ,9 ]
Khademhosseini, Ali [4 ,5 ,10 ,11 ,12 ]
Sheikhi, Amir [13 ,14 ]
Kaner, Richard B. [1 ,2 ,5 ,6 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Silq Technol Corp, Los Angeles, CA 90025 USA
[3] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Ctr Minimally Invas Therapeut C MIT, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[8] Univ Southern Calif, Dept Urol, Keck Sch Med, Los Angeles, CA 90033 USA
[9] Rancho Los Amigos Natl Rehabil Ctr, Rancho Res Inst, Downey, CA 90242 USA
[10] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[11] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[12] Konkuk Univ, Coll Anim Biosci & Technol, Dept BioInd Technol, Seoul 143701, South Korea
[13] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[14] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
基金
美国国家卫生研究院; 美国国家科学基金会; 加拿大健康研究院;
关键词
antibiofouling; antimicrobial stewardship; cross-linkable coating modification; protein repellant; universal surface treatment; zwitterionic surfaces; CARE-ASSOCIATED INFECTIONS; HYDROPHOBIC RECOVERY; BACTERIAL ADHESION; BIOFILM FORMATION; PDMS; CATHETERS; COATINGS; CELL; POLY(DIMETHYLSILOXANE); FUNCTIONALITY;
D O I
10.1002/adma.202200254
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Unlike growth on tissue, microbes can grow freely on implantable devices with minimal immune system intervention and often form resilient biofilms that continuously pump out pathogenic cells. The efficacy of antibiotics used to treat infection is declining due to increased rates of pathogenic resistance. A simple, one-step zwitterionic surface modification is developed to significantly reduce protein and microbial adhesion to synthetic materials and demonstrate the successful modification of several clinically relevant materials, including recalcitrant materials such as elastomeric polydimethylsiloxane. The treated surfaces exhibit robust adhesion resistance against proteins and microorganisms in both static and flow conditions. Furthermore, the surface treatment prevents the adhesion of mammalian fibroblast cells while displaying no cytotoxicity. To demonstrate the clinical efficacy of the novel technology in the real-world, a surface-treated, commercial silicone foley catheter is developed that is cleared for use by the U.S. Food and Drug Administration (K192034). 16 long-term catheterized patients received surface-treated catheters and completed a Patient Global Impression of Improvement (PGI-I) questionnaire. 10 out of 16 patients described their urinary tract condition post implantation as "much better" or "very much better" and 72% (n = 13) of patients desire to continue using the surface-treated catheter over conventional latex or silicone catheters.
引用
收藏
页数:11
相关论文
共 25 条
  • [1] Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices
    Erathodiyil, Nandanan
    Chan, Hsi-Min
    Wu, Hong
    Ying, Jackie Y.
    MATERIALS TODAY, 2020, 38 (38) : 84 - 98
  • [2] A Batteryless Energy Harvesting Storage System for Implantable Medical Devices Demonstrated In Situ
    Gall, Oren Z.
    Meng, Chuizhou
    Bhamra, Hansraj
    Mei, Henry
    John, Simon W. M.
    Irazoqui, Pedro P.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (03) : 1360 - 1373
  • [3] A Batteryless Energy Harvesting Storage System for Implantable Medical Devices Demonstrated In Situ
    Oren Z. Gall
    Chuizhou Meng
    Hansraj Bhamra
    Henry Mei
    Simon W. M. John
    Pedro P. Irazoqui
    Circuits, Systems, and Signal Processing, 2019, 38 : 1360 - 1373
  • [4] Durable plasma-mediated zwitterionic grafting on polymeric surfaces for implantable medical devices
    Crago, Matthew
    Tan, Richard
    Hung, Juichien
    Wise, Steven G.
    Akhavan, Behnam
    Bilek, Marcela
    Dehghani, Fariba
    Talebian, Sepehr
    Naficy, Sina
    COMMUNICATIONS MATERIALS, 2024, 5 (01)
  • [5] Durable plasma-mediated zwitterionic grafting on polymeric surfaces for implantable medical devices
    Matthew Crago
    Richard Tan
    Juichien Hung
    Steven G. Wise
    Behnam Akhavan
    Marcela Bilek
    Fariba Dehghani
    Sepehr Talebian
    Sina Naficy
    Communications Materials, 5
  • [6] Strategies for surface coatings of implantable cardiac medical devices
    Coronel-Meneses, David
    Sanchez-Trasvina, Calef
    Ratera, Imma
    Mayolo-Deloisa, Karla
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [7] Surface finishing of Nitinol for implantable medical devices: A review
    Mani, Gopinath
    Porter, Deanna
    Grove, Kent
    Collins, Shell
    Ornberg, Andreas
    Shulfer, Robert
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2022, 110 (12) : 2763 - 2778
  • [8] Treatment of chronic inflammatory diseases with implantable medical devices
    Zitnik, Ralph J.
    ANNALS OF THE RHEUMATIC DISEASES, 2011, 70 : I67 - I70
  • [9] Zwitterionic Polymers for Biomedical Applications: Antimicrobial and Antifouling Strategies toward Implantable Medical Devices and Drug Delivery
    Moayedi, Sara
    Xia, Weibo
    Lundergan, Liam
    Yuan, Heyang
    Xu, Jinjia
    LANGMUIR, 2024, 40 (44) : 23125 - 23145
  • [10] Radiofrequency neurotomy for the treatment of chronic pain: interference with implantable medical devices
    Barbieri, Massimo
    Bellini, Martina
    ANAESTHESIOLOGY INTENSIVE THERAPY, 2014, 46 (03) : 162 - 165