Well-posedness in the generalized sense of the multivalued fixed point problem

被引:3
|
作者
Nguyen Van Dung [1 ,2 ]
Vo Thi Le Hang [3 ,4 ]
机构
[1] Ton Duc Thang Univ, Nonlinear Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Dong Thap Univ, Journal Sci, Cao Lanh City, Dong Thap Provi, Vietnam
[4] Dong Thap Univ, Fac Math & Informat Technol Teacher Educ, Cao Lanh City, Dong Thap Provi, Vietnam
关键词
Well-posedness; multivalued fixed point; Barnsley-Hutchinson map; OPERATORS;
D O I
10.2989/16073606.2017.1402213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give answers to questions on well-posedness in the generalized sense of the multivalued fixed point problem, which includes the well-posedness of Barnsley-Hutchinson map, raised in [7], [8] and [9].
引用
收藏
页码:799 / 810
页数:12
相关论文
共 50 条
  • [21] Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems
    Ya-Ping Fang
    Nan-Jing Huang
    Jen-Chih Yao
    Journal of Global Optimization, 2008, 41 : 117 - 133
  • [22] WELL-POSEDNESS OF A PARABOLIC INVERSE PROBLEM
    喻文焕
    Acta Mathematicae Applicatae Sinica, 1997, (03) : 329 - 336
  • [23] Well-posedness of a parabolic inverse problem
    Yu W.
    Acta Mathematicae Applicatae Sinica, 1997, 13 (3) : 329 - 336
  • [24] Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems
    Fang, Ya-Ping
    Huang, Nan-Jing
    Yao, Jen-Chih
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 41 (01) : 117 - 133
  • [25] Well-posedness for the split equilibrium problem
    Dey, Soumitra
    Vetrivel, V.
    Xu, Hong-Kun
    OPTIMIZATION LETTERS, 2024, 18 (04) : 977 - 989
  • [26] Well-posedness for the split equilibrium problem
    Soumitra Dey
    V. Vetrivel
    Hong-Kun Xu
    Optimization Letters, 2024, 18 : 977 - 989
  • [27] Well-posedness for a class of generalized Zakharov system
    You, Shujun
    Ning, Xiaoqi
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1289 - 1302
  • [28] Well-posedness for Parametric Generalized Strong Vector Quasi-Equilibrium Problem
    Zhao, Yali
    Zhu, Lin
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4093 - 4096
  • [29] Well-posedness of generalized vector variational inequality problem via topological approach
    Satish Kumar
    Ankit Gupta
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 161 - 169
  • [30] GENERALIZED WELL-POSEDNESS OF VECTOR OPTIMIZATION PROBLEMS
    Luo, H. L.
    Huang, X. X.
    Peng, J. W.
    PACIFIC JOURNAL OF OPTIMIZATION, 2011, 7 (02): : 353 - 367