Iterative sparse and deep learning for accurate diagnosis of Alzheimer's disease

被引:40
|
作者
Chen, Yuanyuan [1 ,2 ]
Xia, Yong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated Aerosp Ground Ocean Big, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Alzheimer's disease; Mild cognitive impairment; Deep learning; Sparse regression; MILD COGNITIVE IMPAIRMENT; HIPPOCAMPAL SHAPE; CLASSIFICATION; PREDICTION; SELECTION; MODEL;
D O I
10.1016/j.patcog.2021.107944
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning techniques have been increasingly applied to the diagnosis of Alzheimer's disease (AD) and the conversion from mild cognitive impairment (MCI) to AD. Despite their prevalence, existing methods usually suffer from using either irrelevant brain regions or less-accurate landmarks. In this paper, we propose the iterative sparse and deep learning (ISDL) model for joint deep feature extraction and critical cortical region identification to diagnose AD and MCI. We first design a deep feature extraction (DFE) module to capture the local-to-global structural information derived from 62 cortical regions. Then we design a sparse regression module to identify the critical cortical regions and integrate it into the DFE module to exclude irrelevant cortical regions from the diagnosis process. The parameters of the two modules are updated alternatively and iteratively in an end-to-end manner. Our experimental results suggest the ISDL model provides a state-of-the-art solution to both AD-CN classification and MCI-to-AD prediction. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Sparse Bayesian Multiview Learning for Simultaneous Association Discovery and Diagnosis of Alzheimer's Disease
    Zhe, Shandian
    Xu, Zenglin
    Qi, Yuan
    Yu, Peng
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1966 - 1972
  • [22] An MRI-based deep learning approach for accurate detection of Alzheimer's disease
    EL-Geneedy, Marwa
    Moustafa, Hossam El-Din
    Khalifa, Fahmi
    Khater, Hatem
    AbdElhalim, Eman
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 63 : 211 - 221
  • [23] Deep Learning for Diagnosis of Alzheimer's Disease with FDG-PET Neuroimaging
    Bastos, Jose
    Silva, Filipe
    Georgieva, Petia
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 95 - 107
  • [24] Automatic assessment of Alzheimer's disease diagnosis based on deep learning techniques
    Puente-Castro, Alejandro
    Fernandez-Blanco, Enrique
    Pazos, Alejandro
    Munteanu, Cristian R.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 120 (120)
  • [25] A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images
    Doaa Ahmed Arafa
    Hossam El-Din Moustafa
    Hesham A. Ali
    Amr M. T. Ali-Eldin
    Sabry F. Saraya
    Multimedia Tools and Applications, 2024, 83 : 3767 - 3799
  • [26] Deep joint learning of pathological region localization and Alzheimer’s disease diagnosis
    Changhyun Park
    Wonsik Jung
    Heung-Il Suk
    Scientific Reports, 13
  • [27] Multimodal attention-based deep learning for Alzheimer's disease diagnosis
    Golovanevsky, Michal
    Eickhoff, Carsten
    Singh, Ritambhara
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (12) : 2014 - 2022
  • [28] Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease
    Hongfei Jia
    Huan Lao
    Neural Computing and Applications, 2022, 34 : 19585 - 19598
  • [29] A deep learning framework for early diagnosis of Alzheimer's disease on MRI images
    Arafa, Doaa Ahmed
    Moustafa, Hossam El-Din
    Ali, Hesham A.
    Ali-Eldin, Amr M. T.
    Saraya, Sabry F.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (2) : 3767 - 3799
  • [30] Early diagnosis of Alzheimer's disease based on deep learning: A systematic review
    Fathi, Sina
    Ahmadi, Maryam
    Dehnad, Afsaneh
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146