Iterative sparse and deep learning for accurate diagnosis of Alzheimer's disease

被引:48
作者
Chen, Yuanyuan [1 ,2 ]
Xia, Yong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated Aerosp Ground Ocean Big, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Alzheimer's disease; Mild cognitive impairment; Deep learning; Sparse regression; MILD COGNITIVE IMPAIRMENT; HIPPOCAMPAL SHAPE; CLASSIFICATION; PREDICTION; SELECTION; MODEL;
D O I
10.1016/j.patcog.2021.107944
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning techniques have been increasingly applied to the diagnosis of Alzheimer's disease (AD) and the conversion from mild cognitive impairment (MCI) to AD. Despite their prevalence, existing methods usually suffer from using either irrelevant brain regions or less-accurate landmarks. In this paper, we propose the iterative sparse and deep learning (ISDL) model for joint deep feature extraction and critical cortical region identification to diagnose AD and MCI. We first design a deep feature extraction (DFE) module to capture the local-to-global structural information derived from 62 cortical regions. Then we design a sparse regression module to identify the critical cortical regions and integrate it into the DFE module to exclude irrelevant cortical regions from the diagnosis process. The parameters of the two modules are updated alternatively and iteratively in an end-to-end manner. Our experimental results suggest the ISDL model provides a state-of-the-art solution to both AD-CN classification and MCI-to-AD prediction. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 43 条
[11]   A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM) [J].
Kurth, Florian ;
Gaser, Christian ;
Luders, Eileen .
NATURE PROTOCOLS, 2015, 10 (02) :293-304
[12]  
Le Q.V., 2019, P INT C MACHINE LEAR
[13]   Relational-Regularized Discriminative Sparse Learning for Alzheimer's Disease Diagnosis [J].
Lei, Baiying ;
Yang, Peng ;
Wang, Tianfu ;
Chen, Siping ;
Ni, Dong .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (04) :1102-1113
[14]   A Robust Deep Model for Improved Classification of AD/MCI Patients [J].
Li, Feng ;
Tran, Loc ;
Thung, Kim-Han ;
Ji, Shuiwang ;
Shen, Dinggang ;
Li, Jiang .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (05) :1610-1616
[15]  
Li RJ, 2014, LECT NOTES COMPUT SC, V8675, P305, DOI 10.1007/978-3-319-10443-0_39
[16]   Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI [J].
Lian, Chunfeng ;
Liu, Mingxia ;
Zhang, Jun ;
Shen, Dinggang .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (04) :880-893
[17]   Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer's Disease Prediction From Mild Cognitive Impairment [J].
Lin, Weiming ;
Tong, Tong ;
Gao, Qinquan ;
Guo, Di ;
Du, Xiaofeng ;
Yang, Yonggui ;
Guo, Gang ;
Xiao, Min ;
Du, Min ;
Qu, Xiaobo .
FRONTIERS IN NEUROSCIENCE, 2018, 12
[18]   Multi-Hypergraph Learning for Incomplete Multimodality Data [J].
Liu, Mingxia ;
Gao, Yue ;
Yap, Pew-Thian ;
Shen, Dinggang .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (04) :1197-1208
[19]   View-aligned hypergraph learning for Alzheimer's disease diagnosis with incomplete multi-modality data [J].
Liu, Mingxia ;
Zhang, Jun ;
Yap, Pew-Thian ;
Shen, Dinggang .
MEDICAL IMAGE ANALYSIS, 2017, 36 :123-134
[20]   Multimodal Neuroimaging Feature Learning for Multiclass Diagnosis of Alzheimer's Disease [J].
Liu, Siqi ;
Liu, Sidong ;
Cai, Weidong ;
Che, Hangyu ;
Pujol, Sonia ;
Kikinis, Ron ;
Feng, Dagan ;
Fulham, Michael J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (04) :1132-1140