Iterative sparse and deep learning for accurate diagnosis of Alzheimer's disease

被引:41
|
作者
Chen, Yuanyuan [1 ,2 ]
Xia, Yong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated Aerosp Ground Ocean Big, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Alzheimer's disease; Mild cognitive impairment; Deep learning; Sparse regression; MILD COGNITIVE IMPAIRMENT; HIPPOCAMPAL SHAPE; CLASSIFICATION; PREDICTION; SELECTION; MODEL;
D O I
10.1016/j.patcog.2021.107944
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning techniques have been increasingly applied to the diagnosis of Alzheimer's disease (AD) and the conversion from mild cognitive impairment (MCI) to AD. Despite their prevalence, existing methods usually suffer from using either irrelevant brain regions or less-accurate landmarks. In this paper, we propose the iterative sparse and deep learning (ISDL) model for joint deep feature extraction and critical cortical region identification to diagnose AD and MCI. We first design a deep feature extraction (DFE) module to capture the local-to-global structural information derived from 62 cortical regions. Then we design a sparse regression module to identify the critical cortical regions and integrate it into the DFE module to exclude irrelevant cortical regions from the diagnosis process. The parameters of the two modules are updated alternatively and iteratively in an end-to-end manner. Our experimental results suggest the ISDL model provides a state-of-the-art solution to both AD-CN classification and MCI-to-AD prediction. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multimodal attention-based deep learning for Alzheimer's disease diagnosis
    Golovanevsky, Michal
    Eickhoff, Carsten
    Singh, Ritambhara
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (12) : 2014 - 2022
  • [2] Early diagnosis of Alzheimer's disease based on deep learning: A systematic review
    Fathi, Sina
    Ahmadi, Maryam
    Dehnad, Afsaneh
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [3] Deep Learning-Based Diagnosis of Alzheimer's Disease
    Saleem, Tausifa Jan
    Zahra, Syed Rameem
    Wu, Fan
    Alwakeel, Ahmed
    Alwakeel, Mohammed
    Jeribi, Fathe
    Hijji, Mohammad
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [4] Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
    Suk, Heung-Il
    Lee, Seong-Whan
    Shen, Dinggang
    BRAIN STRUCTURE & FUNCTION, 2016, 221 (05) : 2569 - 2587
  • [5] Deep learning for Alzheimer's disease diagnosis: A survey
    Khojaste-Sarakhsi, M.
    Haghighi, Seyedhamidreza Shahabi
    Ghomi, S. M. T. Fatemi
    Marchiori, Elena
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 130
  • [6] Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer's Disease
    Ortiz, Andres
    Munilla, Jorge
    Gorriz, Juan M.
    Ramirez, Javier
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2016, 26 (07)
  • [7] A systematic literature review on the significance of deep learning and machine learning in predicting Alzheimer's disease
    Kaur, Arshdeep
    Mittal, Meenakshi
    Bhatti, Jasvinder Singh
    Thareja, Suresh
    Singh, Satwinder
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154
  • [8] Alzheimer's disease diagnosis from single and multimodal data using machine and deep learning models: Achievements and future directions
    Elazab, Ahmed
    Wang, Changmiao
    Abdelaziz, Mohammed
    Zhang, Jian
    Gu, Jason
    Gorriz, Juan M.
    Zhang, Yudong
    Chang, Chunqi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [9] Conventional machine learning and deep learning in Alzheimer's disease diagnosis using neuroimaging: A review
    Zhao, Zhen
    Chuah, Joon Huang
    Lai, Khin Wee
    Chow, Chee-Onn
    Gochoo, Munkhjargal
    Dhanalakshmi, Samiappan
    Wang, Na
    Bao, Wei
    Wu, Xiang
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2023, 17
  • [10] Early Diagnosis of Alzheimer's Disease Based on Resting-State Brain Networks and Deep Learning
    Ju, Ronghui
    Hu, Chenhui
    Zhou, Pan
    Li, Quanzheng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (01) : 244 - 257