Iterative sparse and deep learning for accurate diagnosis of Alzheimer's disease

被引:48
作者
Chen, Yuanyuan [1 ,2 ]
Xia, Yong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated Aerosp Ground Ocean Big, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Alzheimer's disease; Mild cognitive impairment; Deep learning; Sparse regression; MILD COGNITIVE IMPAIRMENT; HIPPOCAMPAL SHAPE; CLASSIFICATION; PREDICTION; SELECTION; MODEL;
D O I
10.1016/j.patcog.2021.107944
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning techniques have been increasingly applied to the diagnosis of Alzheimer's disease (AD) and the conversion from mild cognitive impairment (MCI) to AD. Despite their prevalence, existing methods usually suffer from using either irrelevant brain regions or less-accurate landmarks. In this paper, we propose the iterative sparse and deep learning (ISDL) model for joint deep feature extraction and critical cortical region identification to diagnose AD and MCI. We first design a deep feature extraction (DFE) module to capture the local-to-global structural information derived from 62 cortical regions. Then we design a sparse regression module to identify the critical cortical regions and integrate it into the DFE module to exclude irrelevant cortical regions from the diagnosis process. The parameters of the two modules are updated alternatively and iteratively in an end-to-end manner. Our experimental results suggest the ISDL model provides a state-of-the-art solution to both AD-CN classification and MCI-to-AD prediction. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 43 条
[1]   Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective [J].
Baumgart, Matthew ;
Snyder, Heather M. ;
Carrillo, Maria C. ;
Fazio, Sam ;
Kim, Hye ;
Johns, Harry .
ALZHEIMERS & DEMENTIA, 2015, 11 (06) :718-726
[2]   Sparse shared structure based multi-task learning for MRI based cognitive performance prediction of Alzheimer's disease [J].
Cao, Peng ;
Shan, Xuanfeng ;
Zhao, Dazhe ;
Huang, Min ;
Zaiane, Osmar .
PATTERN RECOGNITION, 2017, 72 :219-235
[3]   GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond [J].
Cao, Yue ;
Xu, Jiarui ;
Lin, Stephen ;
Wei, Fangyun ;
Hu, Han .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :1971-1980
[4]  
Chen S., 2019, Med3d: Transfer learning for 3d medical image analysis
[5]   Early Identification of Alzheimer's Disease Using an Ensemble of 3D Convolutional Neural Networks and Magnetic Resonance Imaging [J].
Chen, Yuanyuan ;
Jia, Haozhe ;
Huang, Zhaowei ;
Xia, Yong .
ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 :303-311
[6]   Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging [J].
Gerardin, Emilie ;
Chetelat, Gael ;
Chupin, Marie ;
Cuingnet, Remi ;
Desgranges, Beatrice ;
Kim, Ho-Sung ;
Niethammer, Marc ;
Dubois, Bruno ;
Lehericy, Stephane ;
Garnero, Line ;
Eustache, Francis ;
Colliot, Olivier .
NEUROIMAGE, 2009, 47 (04) :1476-1486
[7]  
Guan Y., PLOS ONE, V9
[8]  
He K., 2016, P 29 IEEE C COMPUTER, P770
[9]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[10]   Automatic classification of MR scans in Alzheimers disease [J].
Kloeppel, Stefan ;
Stonnington, Cynthia M. ;
Chu, Carlton ;
Draganski, Bogdan ;
Scahill, Rachael I. ;
Rohrer, Jonathan D. ;
Fox, Nick C. ;
Jack, Clifford R., Jr. ;
Ashburner, John ;
Frackowiak, Richard S. J. .
BRAIN, 2008, 131 :681-689