Global existence and convergence of solutions of Calabi flow on surfaces of genus h≥2

被引:14
作者
Chang, SC [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 30043, Taiwan
来源
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY | 2000年 / 40卷 / 02期
关键词
D O I
10.1215/kjm/1250517718
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, based on a kind of Harnack estimate for the Calabi flow on surfaces, we show the longtime existence and convergence of solutions of 2-dimensional Calabi how on surfaces (Sigma, g(0)) of genus h greater than or equal to 2 with any arbitrary background metric g(0).
引用
收藏
页码:363 / 377
页数:15
相关论文
共 10 条
[1]  
Aubin T., 1982, GRUNDLEHREN MATH WIS, V252
[2]  
Calabi E, 1982, EXTREMAL KAHLER METR, P259
[3]  
Chang S.-Y.A., 1990, J AM MATH SOC, V3, P117
[4]   On the existence of extremal metrics for L2-norm of scalar curvature on closed 3-manifolds [J].
Chang, SC ;
Wu, JT .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1999, 39 (03) :435-454
[5]  
CHANG SC, 1997, LECT ANAL GEOMETRY, P29
[6]   SEMIGLOBAL EXISTENCE AND CONVERGENCE OF SOLUTIONS OF THE ROBINSON-TRAUTMAN (2-DIMENSIONAL CALABI) EQUATION [J].
CHRUSCIEL, PT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (02) :289-313
[7]  
Futaki A., 1988, LECT NOTES MATH, V1314
[8]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[9]   COMPACTNESS OF CONFORMAL METRICS WITH INTEGRAL BOUNDS ON CURVATURE [J].
GURSKY, MJ .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (02) :339-367
[10]  
Hamilton R. S., 1988, Contemp. Math. Amer. Math. Soc., V71, P237, DOI DOI 10.1090/CONM/071/954419