Prediction of Solar Eruptions Using Filament Metadata

被引:17
作者
Aggarwal, Ashna [1 ,2 ]
Schanche, Nicole [2 ,3 ]
Reeves, Katharine K. [2 ]
Kempton, Dustin [4 ]
Angryk, Rafal [4 ]
机构
[1] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
[2] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[3] Univ St Andrews, St Andrews KY16 9SS, Fife, Scotland
[4] Georgia State Univ, Dept Comp Sci, POB 5060, Atlanta, GA 30302 USA
关键词
Sun: activity; Sun: coronal mass ejections (CMEs); Sun:; filaments; prominences; CORONAL MASS EJECTIONS; ACTIVE REGIONS; PROMINENCE; FLARES; CME;
D O I
10.3847/1538-4365/aab77f
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform a statistical analysis of erupting and non-erupting solar filaments to determine the properties related to the eruption potential. In order to perform this study, we correlate filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a spatiotemporal tracking algorithm. The HEK provides metadata about each filament instance, including values for length, area, tilt, and chirality. We add additional metadata properties such as the distance from the nearest active region and the magnetic field decay index. We compare trends in the metadata from erupting and non-erupting filament tracks to discover which properties present signs of an eruption. We find that a change in filament length over time is the most important factor in discriminating between erupting and non-erupting filament tracks, with erupting tracks being more likely to have decreasing length. We attempt to find an ensemble of predictive filament metadata using a Random Forest Classifier approach, but find the probability of correctly predicting an eruption with the current metadata is only slightly better than chance.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Signature of an avalanche in solar flares as measured by photospheric magnetic fields [J].
Abramenko, VI ;
Yurchyshyn, VB ;
Wang, H ;
Spirock, TJ ;
Goode, PR .
ASTROPHYSICAL JOURNAL, 2003, 597 (02) :1135-1144
[2]   FORMATION OF TORUS-UNSTABLE FLUX ROPES AND ELECTRIC CURRENTS IN ERUPTING SIGMOIDS [J].
Aulanier, G. ;
Toeroek, T. ;
Demoulin, P. ;
DeLuca, E. E. .
ASTROPHYSICAL JOURNAL, 2010, 708 (01) :314-333
[3]   Forecasting a CME by Spectroscopic Precursor? [J].
Baker, D. ;
van Driel-Gesztelyi, L. ;
Green, L. M. .
SOLAR PHYSICS, 2012, 276 (1-2) :219-239
[4]   Photospheric magnetic field properties of flaring versus flare-quiet active regions. III. Magnetic charge topology models [J].
Barnes, G. ;
Leka, K. D. .
ASTROPHYSICAL JOURNAL, 2006, 646 (02) :1303-1318
[5]   A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE "ALL-CLEAR" WORKSHOP [J].
Barnes, G. ;
Leka, K. D. ;
Schrijver, C. J. ;
Colak, T. ;
Qahwaji, R. ;
Ashamari, O. W. ;
Yuan, Y. ;
Zhang, J. ;
McAteer, R. T. J. ;
Bloomfield, D. S. ;
Higgins, P. A. ;
Gallagher, P. T. ;
Falconer, D. A. ;
Georgoulis, M. K. ;
Wheatland, M. S. ;
Balch, C. ;
Dunn, T. ;
Wagner, E. L. .
ASTROPHYSICAL JOURNAL, 2016, 829 (02)
[6]   Advanced automated solar filament detection and characterization code: Description, performance, and results [J].
Bernasconi, PN ;
Rust, DM ;
Hakim, D .
SOLAR PHYSICS, 2005, 228 (1-2) :97-117
[7]   PREDICTING CORONAL MASS EJECTIONS USING MACHINE LEARNING METHODS [J].
Bobra, M. G. ;
Ilonidis, S. .
ASTROPHYSICAL JOURNAL, 2016, 821 (02)
[8]   SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM [J].
Bobra, M. G. ;
Couvidat, S. .
ASTROPHYSICAL JOURNAL, 2015, 798 (02)
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares [J].
Colak, T. ;
Qahwaji, R. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2009, 7