Global attractors for a nonclassical diffusion equation

被引:57
作者
Sun, Chun You [1 ]
Wang, Su Yun
Zhong, Cheng Kui
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Lanzhou Teachers Coll, Dept Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
nonclassical diffusion equation; critical exponent; polynomial growth of arbitrary order; global attractor; asymptotic a priori estimate;
D O I
10.1007/s10114-005-0909-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of global attractors in H-0(1)(Omega) for a nonclassical diffusion equation. Two types of nonlinearity f are considered: one is the critical exponent, and the other is the polynomial growth of arbitrary order.
引用
收藏
页码:1271 / 1280
页数:10
相关论文
共 12 条
[1]   ON THE PROBLEM OF DIFFUSION IN SOLIDS [J].
AIFANTIS, EC .
ACTA MECHANICA, 1980, 37 (3-4) :265-296
[2]  
[Anonymous], ACTA MATH APPL SIN
[3]  
Babin A.V., 1992, ATTRACTORS EVOLUTION
[4]   ON A THEORY OF HEAT CONDUCTION INVOLVING 2 TEMPERATURES [J].
CHEN, PJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04) :614-&
[5]  
Cholewa J.W., 2000, Global Attractors in Abstract Parabolic Problems
[6]  
CHOLEWA JW, 2003, EVOLUTION EQUATIONS, V60, P13
[7]  
Hale J.K., 1988, MATH SURVEYS MONOGRA, V25
[8]  
Lions J., 1972, Die Grundlehren der mathematischen Wissenschaften, V181
[9]  
MA QF, 2002, J INDIANA U MATH, V51
[10]   Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains [J].
Sun, CY ;
Zhong, CK .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (01) :49-65