A Novel Fractional-Order System: Chaos, Hyperchaos and Applications to Linear Control

被引:17
作者
Matouk, Ahmed Ezzat [1 ,2 ,3 ]
机构
[1] Majmaah Univ, Coll Sci Al Zulfi, Dept Math, Al Majmaah 11952, Saudi Arabia
[2] Majmaah Univ, Coll Engn, Al Majmaah 11952, Saudi Arabia
[3] Mansoura Higher Inst Engn & Technol, Damietta High Way, Mansourah, Egypt
来源
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS | 2021年 / 7卷 / 02期
关键词
Fractional-order; Hopf bifurcation; Chaos; Hyperchaos; Linear control; DIFFERENTIAL-EQUATIONS; SYNCHRONIZATION; DYNAMICS; MODEL;
D O I
10.22055/JACM.2020.35092.2561
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Chaos and hyperchaos are generated from a new fractional-order system. Local stability of the system's three equilibria is analyzed when the fractional parameter belongs to (0,2]. According to Hopf bifurcation theory in fractional-order systems, approximations to the periodic solutions around the system's three equilibria are explored. Lyapunov exponents, Lyapunov spectrum and bifurcation diagrams are computed and chaotic (hyperchaotic) attractors are depicted. Furthermore, a linear control technique (LFGC) based on Lyapunov stability theory is implemented to derive the hyperchaotic states of the proposed system to its three equilibrium points. Numerical results are used to validate the theoretical results.
引用
收藏
页码:701 / 714
页数:14
相关论文
共 31 条
  • [1] On fractional order differential equations model for nonlocal epidemics
    Ahmed, E.
    Elgazzar, A. S.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) : 607 - 614
  • [2] Ahmed E, MATH METHOD APPL SCI
  • [3] Chaotic dynamics and chaos control for the fractional-order geomagnetic field model
    Al-khedhairi, A.
    Matouk, A. E.
    Khan, I
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 128 : 390 - 401
  • [4] Computations of synchronisation conditions in some fractional-order chaotic and hyperchaotic systems
    Al-Khedhairi, A.
    Matouk, A. E.
    Askar, S. S.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (05):
  • [5] [Anonymous], 2011, J FRACT CALC APPL
  • [6] LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2
    CAPUTO, M
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05): : 529 - &
  • [7] A fractional diffusion random laser
    Chen, Yuyao
    Fiorentino, Alfredo
    Dal Negro, Luca
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [8] Heat transfer flow of Maxwell hybrid nanofluids due to pressure gradient into rectangular region
    Chu, Yu-Ming
    Ali, Rizwan
    Asjad, Muhammad Imran
    Ahmadian, Ali
    Senu, Norazak
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [9] A predictor-corrector approach for the numerical solution of fractional differential equations
    Diethelm, K
    Ford, NJ
    Freed, AD
    [J]. NONLINEAR DYNAMICS, 2002, 29 (1-4) : 3 - 22
  • [10] Dynamical Analysis and Circuit Simulation of a New Fractional-Order Hyperchaotic System and Its Discretization
    El-Sayed, A. M. A.
    Elsonbaty, A.
    Elsadany, A. A.
    Matouk, A. E.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (13):