Lower Bounds for Accuracy of Estimation in Magnetic Resonance High Angular Resolution Diffusion Imaging Data

被引:1
作者
Banerjee, Chitrak [1 ]
Sakhanenko, Lyudmila [1 ]
Zhu, David C. [2 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Radiol, 846 Serv Rd, E Lansing, MI 48824 USA
关键词
Local asymptotic normality; Optimal rate of convergence; Magnetic resonance high angular resolution diffusion imaging; Nonparametric estimation; 62G20; 62C20; NETWORK;
D O I
10.1007/s41096-019-00071-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
High angular resonance diffusion imaging (HARDI) is a popular in vivo magnetic resonance brain imaging technique. Clinicians and neuroscientists often use HARDI to understand the fiber geometry inside a human brain. Carmichael and Sakhanenko (Linear Algebra Appl 473:377-403, 2015) (C-S) in their work investigated estimators of the integral curves and their asymptotic distributions under a noisy tensor field model for the imaging signals. Under their model, the present work establishes the minimax lower bound for the asymptotic risk of the integral curve estimators. Additionally, this work generalizes the results of Sakhanenko (Theory Probab Appl 54:168-177, 2012), where minimax lower bounds for the asymptotic risk of the estimators of the integral curves were established under a simple vector model of the imaging signals perturbed by an additive noise.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 27 条
[1]  
[Anonymous], 2011, THESIS
[2]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[3]   Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? [J].
Behrens, T. E. J. ;
Berg, H. Johansen ;
Jbabdi, S. ;
Rushworth, M. F. S. ;
Woolrich, M. W. .
NEUROIMAGE, 2007, 34 (01) :144-155
[4]   Estimation of integral curves from high angular resolution diffusion imaging (HARDT) data [J].
Carmichael, Owen ;
Sakhanenko, Lyudmila .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 473 :377-403
[5]   Adaptivity and optimality of the monotone least-squares estimator [J].
Cator, Eric .
BERNOULLI, 2011, 17 (02) :714-735
[6]   Neural network connectivity differences in children who stutter [J].
Chang, Soo-Eun ;
Zhu, David C. .
BRAIN, 2013, 136 :3709-3726
[7]  
Coddington EA., 1955, THEORY ORDINARY DIFF
[8]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[9]   Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications [J].
Descoteaux, Maxime ;
Angelino, Elaine ;
Fitzgibbons, Shaun ;
Deriche, Rachid .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (02) :395-410
[10]  
Efromovich S, 1998, ANN STAT, V26, P273