Hydrophobic Properties of Al2O3 Doped with Rare-Earth Metals: Ab Initio Modeling Studies

被引:5
|
作者
Zemla, Marcin R. [1 ,2 ]
Spiewak, Piotr [1 ,2 ]
Wejrzanowski, Tomasz [1 ,2 ]
Kurzydlowski, Krzysztof J. [1 ,2 ]
机构
[1] Warsaw Univ Technol, Fac Mat Sci & Engn, Woloska 141, PL-02507 Warsaw, Poland
[2] Technol Partners Fdn, Pawinskiego 5A, PL-02106 Warsaw, Poland
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2018年 / 215卷 / 16期
基金
加拿大自然科学与工程研究理事会;
关键词
Al2O3; contact angle; density functional theory; rare-earth metals; tuning of wettability; TOTAL-ENERGY CALCULATIONS; SUPERHYDROPHOBIC SURFACES; ADSORPTION; ADHESION; OXIDE;
D O I
10.1002/pssa.201700895
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polymer-based hydrophobic coatings degrade in response to high temperatures or abrasion. Rare-earth oxides (REOs) as a ceramic material may provide more robust surfaces whose hydrophobicity is maintained due to their specific electron configuration. It has been also shown that REO thin films are stable on the surface of bare materials used in the aerospace industry (i.e., aluminum and titanium alloys). Hence, coating or doping of Al2O3 and TiO2 surfaces with REO might be promising both theoretically and practically. Following our previous studies on cerium-doped Al2O3 and TiO2, in this work, the density functional theory (DFT) method is applied to investigate the possibility of tuning the wettability of commonly used hydrophilic Al2O3 by surface doping with neodymium (Nd) and europium (Eu). The results indicate that Nd and Eu segregate to the (0001) surface of Al2O3 and thermodynamically stable oxygen termination of dopant is formed. A significant increase in the static water contact angle provide a valuable opportunity for the RE element surface modification of Al2O3, in order to achieve hydrophobicity.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Ab initio Investigations of Carbon Atoms Adsorbed on α-Al2O3 Surfaces in Relation to Graphene Growth
    Ryou, Junga
    Hong, Suklyun
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (11)
  • [22] Ab initio temperature-dependent simulation of ZnO adsorbed on the α-Al2O3(0001) surface
    Yang, Chun
    Yi, Yu
    Li, Y. R.
    SURFACE REVIEW AND LETTERS, 2006, 13 (01) : 27 - 33
  • [23] Atomic and Electronic Structure of the Al2O3/Al Interface during Oxide Propagation Probed by Ab Initio Grand Canonical Monte Carlo
    Somjit, Vrindaa
    Yildiz, Bilge
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (37) : 42613 - 42627
  • [24] Ab initio simulations of the Ag(111)/Al2O3 interface at intermediate oxygen partial pressures
    Passerone, D.
    Pignedoli, C. A.
    Valenza, F.
    Muolo, M. L.
    Passerone, A.
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (16) : 4265 - 4270
  • [25] Water Molecular Beam Scattering at α-Al2O3(0001): An Ab Initio Molecular Dynamics Study
    Heiden, Sophia
    Wirth, Jonas
    Campen, R. Kramer
    Saalfrank, Peter
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (27) : 15494 - 15504
  • [26] Ab-initio studies of some rare-earth borides: CeB2, PrB2, NdB2, and PmB2
    Ozisik, Haci
    Deligoz, Engin
    Colakoglu, Kemal
    Surucu, Gokhan
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2013, 104 (09) : 858 - 864
  • [27] Crystal, electronic structures and photoluminescence properties of rare-earth doped LiSi2N3
    Li, Y. Q.
    Hirosaki, N.
    Xie, R. J.
    Takeka, T.
    Mitomo, M.
    JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (02) : 301 - 311
  • [28] Surface property of the Cu doped γ-Al2O3: A density functional theory study
    Shi, Liu
    Huang, Yan
    Lu, Zhang-Hui
    Cen, Wanglai
    Yu, Xiaohu
    Qing, Shaojun
    Gao, Zhixian
    Zhang, Rongbin
    Feng, Gang
    APPLIED SURFACE SCIENCE, 2021, 535
  • [29] Adhesive Properties of the TiAl/Al2O3 Interface
    A. V. Bakulin
    S. S. Kulkov
    S. E. Kulkova
    Russian Physics Journal, 2020, 63 : 713 - 720
  • [30] Self-seeded nucleation of Cu nanoclusters on Al2O3/Ni3Al(111): an ab initio investigation
    Olmos-Asar, Jimena A.
    Vesselli, Erik
    Baldereschi, Alfonso
    Peressi, Maria
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (42) : 23134 - 23142