Some general techniques on linear preserver problems

被引:96
作者
Guterman, A
Li, CK
Semrl, P
机构
[1] Univ Ljubljana, Dept Math, SI-1000 Ljubljana, Slovenia
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Moscow MV Lomonosov State Univ, Dept Math & Mech, Fac Higher Algebra, Moscow 119899, Russia
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
linear preserver; matrices; nilpotent; idempotent; algebraically closed fields;
D O I
10.1016/S0024-3795(00)00119-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several general techniques on linear preserver problems are described. The first one is based on a transfer principle in Model Theoretic Algebra that allows one to extend linear preserver results on complex matrices to matrices over other algebraically closed fields of characteristic 0. The second one concerns the use of some simple geometric technique to reduce linear preserver problems to standard types so that known results can be applied. The third one is about solving linear preserver problems on more general (operator) algebras by reducing the problems to idempotent preservers. Numerous examples will be given to demonstrate the proposed techniques. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:61 / 81
页数:21
相关论文
共 45 条
[1]   LINEAR-OPERATORS ON MATRICES - THE INVARIANCE OF RANK-K MATRICES [J].
BEASLEY, LB .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 107 :161-167
[2]  
Botta E.P., 1978, LINEAR ALGEBRA APPL, V20, P45
[3]  
BOTTA EP, 1979, LINEAR MULTILINEAR A, V8, P89
[4]   LINEAR TRANSFORMATIONS PRESERVING POTENT MATRICES [J].
BRESAR, M ;
SEMRL, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :81-86
[5]  
Bresar M, 1998, MICH MATH J, V45, P483
[6]   MAPPINGS WHICH PRESERVE IDEMPOTENTS, LOCAL AUTOMORPHISMS, AND LOCAL DERIVATIONS [J].
BRESAR, M ;
SEMRL, P .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (03) :483-496
[7]   On a certain functional identity in prime rings [J].
Bresar, M ;
Chebotar, MA .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) :3765-3781
[8]   C-STAR-ALGEBRAS OF REAL RANK ZERO [J].
BROWN, LG ;
PEDERSEN, GK .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) :131-149
[9]  
Cherlin G., 1976, LECT NOTES MATH, V521
[10]  
Dieudonne, 1951, MEM AM MATH SOC, V2