THE INTERIOR TRANSMISSION PROBLEM FOR REGIONS WITH CAVITIES

被引:48
作者
Cakoni, Fioralba [2 ]
Colton, David [2 ]
Haddar, Houssem [1 ]
机构
[1] Ecole Polytech, INRIA Saclay Ile France, CMAP, F-91128 Palaiseau, France
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
inhomogeneous medium; interior transmission problem; inverse scattering; transmission eigenvalues; INVERSE SCATTERING;
D O I
10.1137/090754637
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the interior transmission problem in the case when the inhomogeneous medium has cavities, i.e., regions in which the index of refraction is the same as the host medium. In this case we establish the Fredholm property for this problem and show that transmission eigenvalues exist and form a discrete set. We also derive Faber-Krahn-type inequalities for the transmission eigenvalues.
引用
收藏
页码:145 / 162
页数:18
相关论文
共 13 条
[1]  
[Anonymous], 2006, QUALITATIVE METHODS
[2]   Transmission eigenvalues and the nondestructive testing of dielectrics [J].
Cakoni, Fioralba ;
Cayoeren, Mehmet ;
Colton, David .
INVERSE PROBLEMS, 2008, 24 (06)
[3]   On the existence of transmission eigenvalues in an inhomogeneous medium [J].
Cakoni, Fioralba ;
Haddar, Houssem .
APPLICABLE ANALYSIS, 2009, 88 (04) :475-493
[4]   THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC-WAVES IN AN INHOMOGENEOUS-MEDIUM [J].
COLTON, D ;
MONK, P .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1988, 41 :97-125
[5]  
Colton D., 1998, APPL MATH SCI
[6]   The interior transmission problem [J].
Colton, David ;
Paeivaerinta, Lassi ;
Sylvester, John .
INVERSE PROBLEMS AND IMAGING, 2007, 1 (01) :13-28
[7]  
Henrot A, 2006, FRONT MATH, P1
[9]  
Kirsch A., 2008, The factorization method for inverse problems
[10]  
Lions J.L., 1972, Non-homogeneous boundary value problems and applications, V2