Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations

被引:160
作者
Hu, Junping [1 ,2 ,3 ,5 ]
Xu, Bo [4 ]
Ouyang, Chuying [4 ]
Zhang, Ying [6 ]
Yang, Shengyuan A. [3 ]
机构
[1] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
[2] Nanchang Inst Technol, Sch Sci, Nanchang 330099, Peoples R China
[3] Singapore Univ Technol & Design, Res Lab Quantum Mat, Singapore 487372, Singapore
[4] Jiangxi Normal Univ, Dept Phys, Nanchang 330022, Peoples R China
[5] Kunming Inst Phys, Kunming 650223, Yunnan, Peoples R China
[6] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
来源
RSC ADVANCES | 2016年 / 6卷 / 33期
关键词
TRANSITION-METAL CARBIDES; ENERGY-STORAGE; ELECTRONIC-PROPERTIES; 1ST PRINCIPLES; NEGATIVE ELECTRODE; DEFECTIVE GRAPHENE; DIFFUSION; ADSORPTION; NA; PHOSPHORENE;
D O I
10.1039/c5ra25028e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
First-principles calculations are performed to study the electronic properties and metal ion storage capabilities of the two-dimensional (2D) Nb2C monolayer and its corresponding fluoride and hydroxide materials. We show that the Nb2C monolayer and the derived Nb2CF2 and Nb2C(OH)(2) are all metallic in their most stable configurations. We systematically investigate the adsorption and surface diffusion of different metal atom species A = Li, Na, K, Be, Mg, Ca, Al. We find that the bare Nb2C monolayer has excellent performance in the case of Li or Mg: the material remains metallic after adsorption; the ion diffusion is fast with extremely low diffusion barrier; the storage capacity is high (similar to 542 mA h g(-1) for Li and similar to 1084 mA h g(-1) for Mg); and the average intercalation potential is relatively low. Particularly, the diffusion barrier heights for the elements Li, Na, K, Mg and Ca are all lower than 0.1 eV. In addition, the functional groups tend to strongly degrade the performance, which should be avoided in experiment as much as possible. Our results suggest that the Nb2C monolayer is a promising anode material for Li- or non-Li-ion batteries.
引用
收藏
页码:27467 / 27474
页数:8
相关论文
共 50 条
  • [21] Nb2N monolayer as a promising anode material for Li/Na/K/Ca-ion batteries: a DFT calculation
    Wang, Yanwei
    Tian, Wu
    Zhang, Huijuan
    Wang, Yu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (21) : 12288 - 12295
  • [22] Bi-C monolayer as a promising 2D anode material for Li, Na, and K-ion batteries
    Ghani, Awais
    Ahmed, Shehzad
    Murtaza, Adil
    Muhammad, Imran
    Rehman, Wasif ur
    Zhou, Chao
    Zuo, Wen Liang
    Yang, Sen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (06) : 4980 - 4986
  • [23] Structural, mechanical and electronic properties of Nb2C: first-principles calculations
    Sha, Xiaojing
    Xiao, Namin
    Guan, Yongjun
    Yi, Xiaosu
    RSC ADVANCES, 2017, 7 (53) : 33402 - 33407
  • [24] The first-principles study of 2D monolayer T-Mo2 C as promising anode material for Lithium-ion Batteries
    Akhlaq, Muhammad Hamza
    Jalil, Abdul
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 699
  • [25] BC2N/Graphene Heterostructure as a Promising Anode Material for Rechargeable Li-Ion Batteries by Density Functional Calculations
    Zhang, Jing
    Zhang, Yong-Fan
    Huang, Shu-Ping
    Lin, Wei
    Chen, Wen-Kai
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (51) : 30809 - 30818
  • [26] 1T-MoS2 monolayer as a promising anode material for (Li/Na/Mg)-ion batteries
    He, Xiaojie
    Wang, Ruichen
    Yin, Huimin
    Zhang, Yongfan
    Chen, Wenkai
    Huang, Shuping
    APPLIED SURFACE SCIENCE, 2022, 584
  • [27] Metallic B2C monolayer as a promising anode material for Li/Na ion storage
    Yu, Xiaohua
    Chen, Xuhui
    Wang, Xiao
    Yuan, Zhentao
    Feng, Jing
    Rong, Ju
    CHEMICAL ENGINEERING JOURNAL, 2021, 406
  • [28] Maleic anhydride as a promising anode material for Na-Ion and Li-Ion batteries with using a proper substrate: A first principles study
    Momeni, Mohammad Jafar
    Targholi, Ehsan
    Mousavi-Khoshdel, Morteza
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 124 : 166 - 172
  • [29] Metallic Nb2S2C Monolayer: A Promising Two-Dimensional Anode Material for Metal-Ion Batteries
    Jing, Yu
    Liu, Jie
    Zhou, Zhenpei
    Zhang, Juan
    Li, Yafei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (44) : 26803 - 26811
  • [30] Moderate Energy for Charging Li-Ion Batteries Determined by First-Principles Calculations
    Chen, Po-Tuan
    Yang, Fang-Haur
    Sangeetha, Thangavel
    Gao, Hong-Min
    Huang, K. David
    BATTERIES & SUPERCAPS, 2018, 1 (06) : 209 - 214