Sums of products of q-Euler numbers

被引:0
作者
Kim, Taekyun [1 ]
机构
[1] Kwangwoon Univ, Div Gen Educ Math, Seoul 139701, South Korea
关键词
Fermionic p-adic integral; q-Euler polynomials;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By using multivariate fermionic p-adic q-integral on Z(p), the author introduced the q-Euler polynomials of higher order (see [1]). From these q-Euler polynomials of higher order, we derive the formula for the sums of products of the q-Euler polynomials of the form Sigma(r=i1 +...+il)(i1, ... ,il >= 0) Sigma(r-il)(k1=0)...Sigma(r-i1-i2-...-il-1)(kl-1=0) ((r)(il,...,il))((r-il)(k1))...((r-i1-i2-...il-1)(kl-1))E-k1+i1,E-q(alpha(1))...E(kl-1+)i(l-1,q)(alpha(l-1))Ei(l,q)(alpha(l))(q-1)(n)(k1+...+kl-1), where E-m,E-q(alpha) are the m-th q-Euler polynomials and ((alpha 1,...,alpha n) (n)) = n!/alpha(1)!...alpha(n)!.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 29 条
[21]   Novel Identities for q-Genocchi Numbers and Polynomials [J].
Araci, Serkan .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
[22]   Numerical computations of the zeros of the q-analogues of ordinary Euler polynomials [J].
Ryoo, C. S. ;
Kim, T. .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 11 (N07) :140-148
[23]   q-EXTENSIONS OF SOME RELATIONSHIPS BETWEEN THE BERNOULLI AND EULER POLYNOMIALS [J].
Luo, Qiu-Ming ;
Srivastava, H. M. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (01) :241-257
[24]   SYMMETRIC IDENTITIES INVOLVING THE MODIFIED (p, q)-HURWITZ EULER ZETA FUNCTION [J].
Kim, A. Hyun ;
An, Chae Kyeong ;
Lee, Hui Young .
JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (5-6) :555-565
[25]   A note on (p, q)-analogue type of Fubini numbers and polynomials [J].
Khan, Waseem Ahmad ;
Nisar, Kottakkaran Sooppy ;
Baleanu, Dumitru .
AIMS MATHEMATICS, 2020, 5 (03) :2743-2757
[26]   A novel approach for obtaining new identities for the λ extension of q- Euler polynomials arising from the q-umbral calculus [J].
Araci, Serkan ;
Acikgoz, Mehmet ;
Diagana, Toka ;
Srivastava, H. M. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04) :1316-1325
[27]   ON HIGHER ORDER (p, q)-FROBENIUS-GENOCCHI NUMBERS AND POLYNOMIALS [J].
Khan, Waseem A. ;
Khan, Idrees A. ;
Kang, J. Y. .
JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2019, 37 (3-4) :295-305
[28]   A Note on Some Properties of the Weighted q-Genocchi Numbers and Polynomials [J].
Jang, L. C. .
JOURNAL OF APPLIED MATHEMATICS, 2011,
[29]   New Construction Weighted (h, q)-Genocchi Numbers and Polynomials Related to Zeta Type Functions [J].
Araci, Serkan ;
Seo, Jong Jin ;
Erdal, Dilek .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011