Lyapunov's theorem for measures on D-posets

被引:17
作者
Barbieri, G [1 ]
机构
[1] Univ Udine, I-33100 Udine, Italy
关键词
Lyapunov theorem; effect algebra; measure;
D O I
10.1023/B:IJTP.0000048807.37145.cc
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize Lyapunov's convexity theorem for measures on effect algebras.
引用
收藏
页码:1613 / 1623
页数:11
相关论文
共 18 条
[1]   LIAPOUNOFF THEOREM FOR NON-ATOMIC, FINITELY-ADDITIVE, BOUNDED, FINITE-DIMENSIONAL, VECTOR-VALUED MEASURES [J].
ARMSTRONG, TE ;
PRIKRY, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 266 (02) :499-514
[2]   Range of finitely additive fuzzy measures [J].
Avallone, A ;
Barbieri, G .
FUZZY SETS AND SYSTEMS, 1997, 89 (02) :231-241
[3]   On a Marinacci uniqueness theorem for measures [J].
Avallone, A ;
Basile, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (02) :378-390
[4]   LIAPUNOV THEOREM FOR MODULAR-FUNCTIONS [J].
AVALLONE, A .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (08) :1197-1204
[5]   The Hahn decomposition theorem for fuzzy measures and applications [J].
Barbieri, G ;
Lepellere, MA ;
Weber, H .
FUZZY SETS AND SYSTEMS, 2001, 118 (03) :519-528
[6]  
Bhaskara Rao K. P. S., 1983, Theory of Charges: a Study of Finitely Additive Measures
[7]  
Candeloro D, 1979, ATTI SEMIN MAT FIS, V28, P102
[8]  
DVURECENSKIJ A, 2000, MATH APPL, P516
[9]   EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS [J].
FOULIS, DJ ;
BENNETT, MK .
FOUNDATIONS OF PHYSICS, 1994, 24 (10) :1331-1352
[10]   THE RANGE OF A VECTOR MEASURE [J].
HALMOS, PR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (04) :416-421