Analytical and Numerical Methods for Vibration Analysis of Thick Rectangular Plates by Modified Mindlin Theory

被引:1
作者
Senjanovic, I. [1 ]
Hadzic, N. [1 ]
Tomic, M. [1 ]
Vladimir, N. [1 ]
Cho, D. S. [2 ]
机构
[1] Univ Zagreb, Fac Mech Engn & Naval Architecture, Ivana Lucica 5, Zagreb 10000, Croatia
[2] Pusan Natl Univ, Busan 609735, South Korea
来源
INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014) | 2014年 / 1618卷
基金
新加坡国家研究基金会;
关键词
Mindlin plate theory; natural vibration; boundary conditions; analytical solution; shear locking; FEM;
D O I
10.1063/1.4897667
中图分类号
O59 [应用物理学];
学科分类号
摘要
Total deflection and angles of rotations in the Mindlin plate theory are decomposed into bending and transverse shear deflection, bending rotations and in-plane shear angles. Single differential equation of flexural vibrations is derived in terms of bending deflection as potential function for determination of all displacements and sectional forces. The equation is solved analytically for different combinations of boundary conditions. Shear locking-free rectangular finite element is formulated. Illustrative examples are solved analytically and numerically, and the obtained results are compared with the ones available in the relevant literature.
引用
收藏
页码:33 / 36
页数:4
相关论文
共 6 条
[1]   TRANSVERSE VIBRATION OF THICK RECTANGULAR-PLATES .1. COMPREHENSIVE SETS OF BOUNDARY-CONDITIONS [J].
LIEW, KM ;
XIANG, Y ;
KITIPORNCHAI, S .
COMPUTERS & STRUCTURES, 1993, 49 (01) :1-29
[2]  
MINDLIN RD, 1951, J APPL MECH-T ASME, V18, P31
[3]  
Senjanovic I., 2013, J SOUND VIBRATIONS, V332, P1968
[4]  
Senjanovic I., 2013, HINDAWI PUBLISHING C, V2013
[5]   Modified Mindlin plate theory and shear locking-free finite element formulation [J].
Senjanovic, Ivo ;
Vladimir, Nikola ;
Hadzic, Neven .
MECHANICS RESEARCH COMMUNICATIONS, 2014, 55 :95-104
[6]   Closed form solutions for free vibrations of rectangular Mindlin plates [J].
Xing, Yufeng ;
Liu, Bo .
ACTA MECHANICA SINICA, 2009, 25 (05) :689-698