Deep neural decoders for near term fault-tolerant experiments

被引:68
作者
Chamberland, Christopher Z. Z. Z. [1 ,2 ]
Ronagh, Pooya [1 ,2 ,3 ,4 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[4] 1QBit, Vancouver, BC V6C 2B5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
quantum error correction; fault-tolerant error correction; neural network decoders; machine learning; surface code decoders; QUANTUM ERROR-CORRECTION; ACCURACY THRESHOLD; COMPUTATION;
D O I
10.1088/2058-9565/aad1f7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finding efficient decoders for quantum error correcting codes adapted to realistic experimental noise in fault-tolerant devices represents a significant challenge. In this paper we introduce several decoding algorithms complemented by deep neural decoders (DND) and apply them to analyze several fault-tolerant error correction (EC) protocols such as the surface code as well as Steane and Knill EC. Our methods require no knowledge of the underlying noise model afflicting the quantum device making them appealing for real-world experiments. Our analysis is based on a full circuit-level noise model. It considers both distance-three and five codes, and is performed near the codes pseudo-threshold regime. Training DND in low noise rate regimes appears to be a challenging machine learning endeavour. We provide a detailed description of our neural network architectures and training methodology. We then discuss both the advantages and limitations of DND. Lastly, we provide a rigorous analysis of the decoding runtime of trained DND and compare our methods with anticipated gate times in future quantum devices. Given the broad applications of our decoding schemes, we believe that the methods presented in this paper could have practical applications for near term fault-tolerant experiments.
引用
收藏
页数:32
相关论文
共 93 条
[1]  
Abadi M., 2015, TensorFlow: Large-scale machine learning on heterogeneous systems.
[2]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[3]  
Aliferis P, 2008, QUANTUM INF COMPUT, V8, P181
[4]  
Aliferis P, 2007, QUANTUM INF COMPUT, V7, P139
[5]   Fault-Tolerant Conversion between the Steane and Reed-Muller Quantum Codes [J].
Anderson, Jonas T. ;
Duclos-Cianci, Guillaume ;
Poulin, David .
PHYSICAL REVIEW LETTERS, 2014, 113 (08)
[6]  
[Anonymous], 1996, ARXIVQUANTPH9610011
[7]  
[Anonymous], 2017, P 44 ANN INT S COMPU
[8]  
[Anonymous], ARXIVQUANTPH17050232
[9]  
[Anonymous], ARXIVQUANTPH17050536
[10]  
[Anonymous], 2004, ARXIVQUANTPH0402171