Representations of Leavitt path algebras

被引:3
作者
Koc, Ayten [1 ]
Ozaydin, Murad [2 ]
机构
[1] Gebze Tech Univ, Dept Math, TR-41400 Gebze, Turkey
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
Leavitt path algebra; Quiver representation; Nonstable K-theory; Dimension function; Serre subcategory; Quotient category;
D O I
10.1016/j.jpaa.2019.07.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study representations of a Leavitt path algebra L of a finitely separated digraph Gamma over a field. We show that the category of L-modules is equivalent to a full subcategory of quiver representations. When Gamma is a (non-separated) row-finite digraph we determine all possible finite dimensional quotients of L after giving a necessary and sufficient graph theoretic criterion for the existence of a nonzero finite dimensional quotient. This criterion is also equivalent to L having UGN (Unbounded Generating Number) as well as being algebraically amenable. We also realize the category of L-modules as a retract, hence a quotient by an explicit Serre subcategory of the category of quiver representations (that is, F Gamma-modules) via a new colimit model for M circle times(F Gamma) L. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1297 / 1319
页数:23
相关论文
共 26 条
[1]   Locally finite Leavitt path algebras [J].
Abrams, G. ;
Pino, G. Aranda ;
Molina, M. Siles .
ISRAEL JOURNAL OF MATHEMATICS, 2008, 165 (01) :329-348
[2]   Finite-dimensional leavitt path algebras [J].
Abrams, G. ;
Aranda Pino, G. ;
Siles Molina, M. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) :753-762
[3]   The Leavitt path algebra of a graph [J].
Abrams, G ;
Pino, GA .
JOURNAL OF ALGEBRA, 2005, 293 (02) :319-334
[4]   Leavitt path algebras having Unbounded Generating Number [J].
Abrams, G. ;
Nam, T. G. ;
Phuc, N. T. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (06) :1322-1343
[5]  
Abrams G., 2017, LECT NOTES MATH, V2191
[6]   Leavitt path algebras are Bezout [J].
Abrams, Gene ;
Mantese, Francesca ;
Tonolo, Alberto .
ISRAEL JOURNAL OF MATHEMATICS, 2018, 228 (01) :53-78
[7]   Cohn Path Algebras have Invariant Basis Number [J].
Abrams, Gene ;
Kanuni, Muge .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) :371-380
[8]   Leavitt path algebras: the first decade [J].
Abrams, Gene .
BULLETIN OF MATHEMATICAL SCIENCES, 2015, 5 (01) :59-120
[9]   Chain conditions for Leavitt path algebras [J].
Abrams, Gene ;
Aranda Pino, Gonzalo ;
Perera, Francesc ;
Siles Molina, Mercedes .
FORUM MATHEMATICUM, 2010, 22 (01) :95-114
[10]   Regularity Conditions for Arbitrary Leavitt Path Algebras [J].
Abrams, Gene ;
Rangaswamy, Kulumani M. .
ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (03) :319-334