Cuts from residues: the one-loop case

被引:59
作者
Abreu, Samuel [1 ]
Britto, Ruth [2 ,3 ,4 ]
Duhr, Claude [5 ,6 ]
Gardi, Einan [7 ]
机构
[1] Albert Ludwigs Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany
[2] Trin Coll, Sch Math, Dublin 2, Ireland
[3] Trin Coll, Hamilton Math Inst, Dublin 2, Ireland
[4] Univ Paris Saclay, CEA, CNRS, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[5] CERN, Theoret Phys Dept, Geneva, Switzerland
[6] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain, Belgium
[7] Univ Edinburgh, Higgs Ctr Theoret Phys, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland
基金
欧洲研究理事会;
关键词
Scattering Amplitudes; Perturbative QCD; DIMENSIONAL RECURRENCE RELATION; DIFFERENTIAL-EQUATIONS METHOD; FEYNMAN-INTEGRALS; MULTILOOP INTEGRALS; ANALYTIC PROPERTIES; HADRON COLLIDERS; 2ND TYPE; AMPLITUDES; PARTS; SINGULARITIES;
D O I
10.1007/JHEP06(2017)114
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using the multivariate residue calculus of Leray, we give a precise definition of the notion of a cut Feynman integral in dimensional regularization, as a residue evaluated on the variety where some of the propagators are put on shell. These are naturally associated to Landau singularities of the first type. Focusing on the one-loop case, we give an explicit parametrization to compute such cut integrals, with which we study some of their properties and list explicit results for maximal and next-to-maximal cuts. By analyzing homology groups, we show that cut integrals associated to Landau singularities of the second type are specific combinations of the usual cut integrals, and we obtain linear relations among different cuts of the same integral. We also show that all one-loop Feynman integrals and their cuts belong to the same class of functions, which can be written as parametric integrals.
引用
收藏
页数:57
相关论文
共 70 条
[1]  
Abramowitz M., 1970, Handbook of Mathematical Functions
[2]   Cuts and coproducts of massive triangle diagrams [J].
Abreu, Samuel ;
Britto, Ruth ;
Groenqvist, Hanna .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07)
[3]   From multiple unitarity cuts to the coproduct of Feynman integrals [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10)
[4]   High-precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at next-to-next-to leading order [J].
Anastasiou, C ;
Dixon, L ;
Melnikov, K ;
Petriello, F .
PHYSICAL REVIEW D, 2004, 69 (09) :27
[5]   Dilepton rapidity distribution in the Drell-Yan process at next-to-next-to-leading order in QCD [J].
Anastasiou, C ;
Dixon, L ;
Melnikov, K ;
Petriello, F .
PHYSICAL REVIEW LETTERS, 2003, 91 (18)
[6]   NLO Higgs boson rapidity distributions at hadron colliders [J].
Anastasiou, C ;
Dixon, L ;
Melnikov, K .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 116 :193-197
[7]   Pseudoscalar Higgs boson production at hadron colliders in next-to-next-to-leading order QCD [J].
Anastasiou, C ;
Melnikov, K .
PHYSICAL REVIEW D, 2003, 67 (03)
[8]   Higgs boson production at hadron colliders in NNLO QCD [J].
Anastasiou, C ;
Melnikov, K .
NUCLEAR PHYSICS B, 2002, 646 (1-2) :220-256
[9]   Soft triple-real radiation for Higgs production at N3LO [J].
Anastasiou, Charalampos ;
Duhr, Claude ;
Dulat, Falko ;
Mistlberger, Bernhard .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07)
[10]  
[Anonymous], ARXIV150607243