Analyticity for a class of nonlocal Kuramoto-Sivashinsky equations arising in interfacial electrohydrodynamics

被引:1
作者
Ioakim, Xenakis [1 ]
机构
[1] Charalampou F Kirillou 8, CY-8250 Empa, Paphos, Cyprus
关键词
analyticity of solutions of partial differential equations; Kuramoto-Sivashinsky equation; nonlocal evolution equations; universal attractors; DISSIPATIVE-DISPERSIVE SYSTEMS; GLOBAL ATTRACTING SET; PSEUDODIFFERENTIAL-EQUATIONS; DYNAMIC-SYSTEMS; INCLINED PLANE; LIQUID-FILM; PROPAGATION; STABILITY; EVOLUTION; BOUNDS;
D O I
10.1002/mma.4844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the analyticity properties of solutions of the nonlocal Kuramoto-Sivashinsky equations, u(t) + uu(x) + u(xx) + u(xxxx) - mu(Ho partial derivative(x))(p)[u] = 0, defined on 2 pi-periodic intervals, where.. is a positive constant; mu is a nonnegative constant; p is an arbitrary but fixed real number in the interval [3, 4); and (Ho partial derivative(x))(p) is an operator defined by its symbol in Fourier space, with. be the Hilbert transform. We establish spatial analyticity in a strip around the real axis for the solutions of such equations, which possess universal attractors. Also, a lower bound for the width of the strip of analyticity is obtained.
引用
收藏
页码:3547 / 3557
页数:11
相关论文
共 39 条
  • [1] On the analyticity of certain dissipative-dispersive systems
    Akrivis, G.
    Papageorgiou, D. T.
    Smyrlis, Y. -S.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 52 - 60
  • [2] Uncertainty estimates and L2 bounds for the Kuramoto-Sivashinsky equation
    Bronski, Jared C.
    Gambill, Thomas N.
    [J]. NONLINEARITY, 2006, 19 (09) : 2023 - 2039
  • [3] A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION
    COLLET, P
    ECKMANN, JP
    EPSTEIN, H
    STUBBE, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) : 203 - 214
  • [4] ANALYTICITY FOR THE KURAMOTO-SIVASHINSKY EQUATION
    COLLET, P
    ECKMANN, JP
    EPSTEIN, H
    STUBBE, J
    [J]. PHYSICA D, 1993, 67 (04): : 321 - 326
  • [5] Constantin P, 1989, Integral manifolds and inertial manifolds for dissipative partial differential equations, V70
  • [6] Coward A. V., 1993, THEOR COMPUT FLUID D, V5, P269, DOI DOI 10.1007/BF00271423
  • [7] Dissipative dynamics for a class of nonlinear pseudo-differential equations
    Frankel, M.
    Roytburd, V.
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (03) : 491 - 512
  • [8] Wavy film flows down an inclined plane: Perturbation theory and general evolution equation for the film thickness
    Frenkel, AL
    Indireshkumar, K
    [J]. PHYSICAL REVIEW E, 1999, 60 (04) : 4143 - 4157
  • [9] New bounds for the Kuramoto-Sivashinsky equation
    Giacomelli, L
    Otto, F
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) : 297 - 318
  • [10] Nonlinear electrohydrodynamic waves on films falling down an inclined plane
    Gonzalez, A
    Castellanos, A
    [J]. PHYSICAL REVIEW E, 1996, 53 (04) : 3573 - 3578