Robust adaptive single neural control for a class of uncertain nonlinear systems with input nonlinearity

被引:24
作者
Chang, WD [1 ]
机构
[1] Shu Te Univ, Dept Comp & Commun, Kaohsiung 824, Taiwan
关键词
auto-tuning neuron; adaptive neural control; chaotic system; sliding condition; modified MIT rule;
D O I
10.1016/j.ins.2004.05.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an adaptive single neural controller for a class of uncertain nonlinear systems subject to a nonlinear input. A new type of neuron called auto-tuning neuron with three adjustable parameters will be introduced to construct a single neural controller. From the concept of the sliding mode control, a simple adaptation law, minimizing the value of a designed sliding condition based on a modified MIT rule, is developed for online updating these parameters in the auto-tuning neuron, even if the nonlinear plant considered is with the uncertainty, external noisy perturbation, and nonlinear input. Lastly, a controlled well-known Duffing-Holmes chaotic system is illustrated to show the effectiveness of the proposed neural controller. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:261 / 271
页数:11
相关论文
共 14 条
[1]   A multivariable on-line adaptive PID controller using auto-tuning neurons [J].
Chang, WD ;
Hwang, RC ;
Hsieh, JG .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2003, 16 (01) :57-63
[2]   Intelligent process control using neural fuzzy techniques [J].
Chen, CT ;
Peng, ST .
JOURNAL OF PROCESS CONTROL, 1999, 9 (06) :493-503
[3]   Multivariable process control using decentralized single neural controllers [J].
Chen, CT ;
Yen, JH .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1998, 31 (01) :14-20
[4]  
Chen CT, 1999, J CHIN INST CHEM ENG, V30, P141
[5]  
Haddad WM, 1997, IEEE DECIS CONTR P, P612, DOI 10.1109/CDC.1997.650698
[6]   Variable structure control design for uncertain dynamic systems with sector nonlinearities [J].
Hsu, KC .
AUTOMATICA, 1998, 34 (04) :505-508
[7]  
Kapila V, 1998, P AMER CONTR CONF, P2396, DOI 10.1109/ACC.1998.703061
[8]   A supervisory fuzzy neural network control system for tracking periodic inputs [J].
Lin, FJ ;
Hwang, WJ ;
Wai, RJ .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (01) :41-52
[9]   Direct adaptive control of wind energy conversion systems using Gaussian networks [J].
Mayosky, MA ;
Cancelo, GIE .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (04) :898-906
[10]   An optimal tracking neuro-controller for nonlinear dynamic systems [J].
Park, YM ;
Choi, MS ;
Lee, KY .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (05) :1099-1110