Photonic Quantum Networks formed from NV-centers

被引:68
作者
Nemoto, Kae [1 ]
Trupke, Michael [2 ]
Devitt, Simon J. [1 ]
Scharfenberger, Burkhard [1 ]
Buczak, Kathrin [2 ]
Schmiedmayer, Joerg [2 ]
Munro, William J. [1 ,3 ]
机构
[1] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
[2] TU Wien, Vienna Ctr Quantum Sci & Technol, Atominst, A-1020 Vienna, Austria
[3] NTT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
基金
奥地利科学基金会;
关键词
SPIN COHERENCE; ATOMIC ENSEMBLES; ELECTRONIC SPIN; SINGLE ATOMS; STATE; ENTANGLEMENT; COMMUNICATION; QUBITS;
D O I
10.1038/srep26284
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV-, with one nuclear spin from N-15 as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology.
引用
收藏
页数:12
相关论文
共 74 条
[1]   All-photonic quantum repeaters [J].
Azuma, Koji ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2015, 6
[2]   Solid-state electronic spin coherence time approaching one second [J].
Bar-Gill, N. ;
Pham, L. M. ;
Jarmola, A. ;
Budker, D. ;
Walsworth, R. L. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Towards fault-tolerant quantum computing with trapped ions [J].
Benhelm, Jan ;
Kirchmair, Gerhard ;
Roos, Christian F. ;
Blatt, Rainer .
NATURE PHYSICS, 2008, 4 (06) :463-466
[4]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[5]   Spin-Light Coherence for Single-Spin Measurement and Control in Diamond [J].
Buckley, B. B. ;
Fuchs, G. D. ;
Bassett, L. C. ;
Awschalom, D. D. .
SCIENCE, 2010, 330 (6008) :1212-1215
[6]   Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters [J].
Childress, L ;
Taylor, JM ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW A, 2005, 72 (05)
[7]   OPTICAL STUDIES OF 1.945 EV VIBRONIC BAND IN DIAMOND [J].
DAVIES, G ;
HAMER, MF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1976, 348 (1653) :285-298
[8]   Arrays of open, independently tunable microcavities [J].
Derntl, Christian ;
Schneider, Michael ;
Schalko, Johannes ;
Bittner, Achim ;
Schmiedmayer, Joerg ;
Schmid, Ulrich ;
Trupke, Michael .
OPTICS EXPRESS, 2014, 22 (18) :22111-22120
[9]   Requirements for fault-tolerant factoring on an atom-optics quantum computer [J].
Devitt, Simon J. ;
Stephens, Ashley M. ;
Munro, William J. ;
Nemoto, Kae .
NATURE COMMUNICATIONS, 2013, 4
[10]   Architectural design for a topological cluster state quantum computer [J].
Devitt, Simon J. ;
Fowler, Austin G. ;
Stephens, Ashley M. ;
Greentree, Andrew D. ;
Hollenberg, Lloyd C. L. ;
Munro, William J. ;
Nemoto, Kae .
NEW JOURNAL OF PHYSICS, 2009, 11