Anomalies detection in mobile network management data

被引:0
作者
Anisetti, Marco [1 ]
Ardagna, Claudio A. [1 ]
Bellandi, Valerio [1 ]
Bernardoni, Elisa [1 ]
Damiani, Ernesto [1 ]
Reale, Salvatore [2 ]
机构
[1] Univ Milan, Dept Informat Technol, Via Bramante,65, I-26013 Crema, Italy
[2] Carrier Res Dev Radio Access Network Management, Milan 20092, Italy
来源
ADVANCES IN DATABASES: CONCEPTS, SYSTEMS AND APPLICATIONS | 2007年 / 4443卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Third generation (3G) mobile networks rely on distributed architectures where Operation and Maintenance Centers handle a large amount of information about network behavior. Such data can be processed to extract higher-level knowledge, useful for network management and optimization. In this paper we apply reduction techniques, such as Principal Component Analysis, to identify orthogonal subspaces representing the more interesting data contributing to overall variance and to split them up in "normal" and "anomalous" subspaces. Patterns within anomalous subspaces allow for early detection of network anomalies, improving mobile networks management and reducing the risk of malfunctioning.
引用
收藏
页码:943 / +
页数:2
相关论文
共 50 条
[11]   Anomalies detection for big data [J].
Torres-Dominguez, Omar ;
Sabater-Fernandez, Samuel ;
Bravo-Ilisatigui, Lisandra ;
Martin-Rodriguez, Diana ;
Garcia-Borroto, Milton .
REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, 2019, 28 (50) :62-75
[12]   DATA MANAGEMENT VIA MOBILE TELEPHONE NETWORK (UMTS) FOR MOBILE BLOOD DONATION SESSIONS [J].
Sievert, U. ;
Pollmer, Ch ;
Wohlfarth, H. ;
Liebscher, U-M ;
Knels, R. .
VOX SANGUINIS, 2010, 99 :103-103
[13]   Data Management at Mobile Blood Donation Camps Via Mobile Telephone Network (UMTS) [J].
Knels, R. ;
Sievert, U. .
TRANSFUSION, 2012, 52 :245A-246A
[14]   Research on the Architecture of Digital Enabling Detection of Data Anomalies in Intelligent Distribution Network [J].
Chen, Bingqian .
PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, :892-898
[15]   MOBILE UNIT FOR DETECTION AND CARE OF CRANIOFACIAL ANOMALIES [J].
ORTIZMONASTERIO, F .
PLASTIC AND RECONSTRUCTIVE SURGERY, 1975, 55 (02) :186-189
[16]   Anomaly detection and classification using a metric for determining the significance of failures Case study: mobile network management data from LTE network [J].
Jerome, Robin Babujee ;
Hatonen, Kimmo .
NEURAL COMPUTING & APPLICATIONS, 2017, 28 (06) :1265-1275
[17]   Deep Learning for Network Anomalies Detection [J].
Dawoud, Ahmed ;
Shahristani, Seyed ;
Raun, Chun .
2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA ENGINEERING (ICMLDE 2018), 2018, :149-153
[18]   DiNATrAX: a Network Anomalies Detection Framework [J].
Maudoux, Christophe ;
Boumerdassi, Selma .
ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, :4090-4095
[19]   Correlating Real-time Monitoring Data for Mobile Network Management [J].
Jiang, Nanyan ;
Jiang, Guofei ;
Chen, Haifeng ;
Yoshihira, Kenji .
2008 IEEE INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS, VOLS 1 AND 2, 2008, :439-+
[20]   Data Acquisition System Research Based on Mobile Agent in Network Management [J].
Li, Yan ;
Zhu, Li .
PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ELECTRONIC TECHNOLOGY, 2015, 6 :485-489