Monotonicity and non-monotonicity regions of topological entropy for Lorenz-like families with infinite derivatives

被引:3
作者
Malkin, M., I [1 ,2 ]
Safonov, K. A. [1 ,2 ]
机构
[1] Lobachevsky State Univ Nizhniy Novgorod, Nizhnii Novgorod, Russia
[2] Natl Res Univ Higher Sch Econ, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
topological entropy; Lorenz attractor; homoclinic bifurcation; jump of entropy; ATTRACTOR; BIFURCATION; PROOF;
D O I
10.2478/AMNS.2020.2.00052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study behavior of the topological entropy as the function of parameters for two-parameter family of symmetric Lorenz maps T-c,T-epsilon(x) = (-1 + c vertical bar x vertical bar(1-epsilon)).sgn(x). This is the normal form for splitting the homoclinic loop in systems which have a saddle equilibrium with one-dimensional unstable manifold and zero saddle value. Due to L.P. Shilnikov results, such a bifurcation corresponds to the birth of Lorenz attractor (when the saddle value becomes positive). We indicate those regions in the bifurcation plane where the topological entropy depends monotonically on the parameter c, as well as those for which the monotonicity does not lake place. Also, we indicate the corresponding bifurcations for the Lorenz attractors.
引用
收藏
页码:293 / 306
页数:14
相关论文
共 16 条
  • [1] Afraimovich V.S., 1982, Tr. Mosk. Mat. Obs., V44, P150
  • [2] BELYKH VN, 1984, DIFF EQUAT+, V20, P1184
  • [3] Computer assisted proof of the existence of the Lorenz attractor in the Shimizu-Morioka system
    Capinski, Maciej J.
    Turaev, Dmitry
    Zgliczynski, Piotr
    [J]. NONLINEARITY, 2018, 31 (12) : 5410 - 5440
  • [4] Douady A, TOPOLOGICAL ENTROPY
  • [5] Levin G., 2019, ARXIV PREPRINT ARXIV
  • [6] Smooth symmetric and Lorenz models for unimodal maps
    Li, MC
    Malkin, M
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (11): : 3353 - 3371
  • [7] Malkin M., 2015, ZH SVMO, V17, P31
  • [8] Malkin M., 1989, Sel. Math. Sov., V8, P131
  • [9] MILNOR J, 1988, LECT NOTES MATH, V1342, P465
  • [10] ENTROPY OF PIECEWISE MONOTONE MAPPINGS
    MISIUREWICZ, M
    SZLENK, W
    [J]. STUDIA MATHEMATICA, 1980, 67 (01) : 45 - 63