Video super-resolution based on deep learning: a comprehensive survey

被引:89
|
作者
Liu, Hongying [1 ,2 ]
Ruan, Zhubo [1 ]
Zhao, Peng [1 ]
Dong, Chao [3 ]
Shang, Fanhua [1 ,2 ]
Liu, Yuanyuan [1 ]
Yang, Linlin [1 ]
Timofte, Radu [4 ,5 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[4] Swiss Fed Inst Technol, Zurich, Switzerland
[5] Univ Wurzburg, Wurzburg, Germany
基金
中国国家自然科学基金;
关键词
Video super-resolution; Deep learning; Convolutional neural networks; Inter-frame information; SUPER-RESOLUTION; NETWORK; RECONSTRUCTION;
D O I
10.1007/s10462-022-10147-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video super-resolution (VSR) is reconstructing high-resolution videos from low resolution ones. Recently, the VSR methods based on deep neural networks have made great progress. However, there is rarely systematical review on these methods. In this survey, we comprehensively investigate 37 state-of-the-art VSR methods based on deep learning. It is well known that the leverage of information contained in video frames is important for video super-resolution. Thus we propose a taxonomy and classify the methods into seven sub-categories according to the ways of utilizing inter-frame information. Moreover, descriptions on the architecture design and implementation details are also included. Finally, we summarize and compare the performance of the representative VSR methods on some benchmark datasets. We also discuss the applications, and some challenges, which need to be further addressed by researchers in the community of VSR. To the best of our knowledge, this work is the first systematic review on VSR tasks, and it is expected to make a contribution to the development of recent studies in this area and potentially deepen our understanding of the VSR techniques based on deep learning.
引用
收藏
页码:5981 / 6035
页数:55
相关论文
共 50 条
  • [31] Applying Deep Learning Based Super-Resolution to Knee Imaging
    Rey-Blanes, Alvaro
    Dominguez, Enrique
    ARTIFICIAL INTELLIGENCE IN HEALTHCARE, PT II, AIIH 2024, 2024, 14976 : 77 - 88
  • [32] A Review of Hyperspectral Image Super-Resolution Based on Deep Learning
    Chen, Chi
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Yuxi
    Zhao, Zhikang
    REMOTE SENSING, 2023, 15 (11)
  • [33] Research on Image Super-Resolution Reconstruction Based on Deep Learning
    An, Lingran
    Dai, Fengzhi
    Yuan, Yasheng
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 640 - 643
  • [34] Deep-Learning-Based Super-Resolution of Video Satellite Imagery by the Coupling of Multiframe and Single-Frame Models
    Shen, Huanfeng
    Qiu, Zhonghang
    Yue, Linwei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] Medical image super-resolution reconstruction algorithms based on deep learning: A survey
    Qiu, Defu
    Cheng, Yuhu
    Wang, Xuesong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 238
  • [36] Video restoration based on deep learning: a comprehensive survey
    Claudio Rota
    Marco Buzzelli
    Simone Bianco
    Raimondo Schettini
    Artificial Intelligence Review, 2023, 56 : 5317 - 5364
  • [37] Video restoration based on deep learning: a comprehensive survey
    Rota, Claudio
    Buzzelli, Marco
    Bianco, Simone
    Schettini, Raimondo
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (06) : 5317 - 5364
  • [38] Advances in Light Field Spatial Super-Resolution: A Comprehensive Literature Survey
    Lyu, Wenqi
    Sheng, Hao
    Ke, Wei
    Ma, Xiao
    IEEE ACCESS, 2025, 13 : 18470 - 18497
  • [39] Deep-learning-based remote sensing video super-resolution for Jilin-1 satellite
    Zhao, Ning
    Shi, Jiawei
    Wang, Pengrui
    Jiang, Zhiguo
    Zhang, Haopeng
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [40] Deep learning for super-resolution localization microscopy
    Zhou, Tianyang
    Luo, Jianwen
    Liu, Xin
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VIII, 2018, 10820