UNIQUENESS OF SOLUTIONS FOR ELLIPTIC SYSTEMS AND FOURTH ORDER EQUATIONS INVOLVING A PARAMETER

被引:0
作者
Cowan, Craig [1 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
关键词
Minimal solution; biharmonic; uniqueness; EXTREMAL SOLUTIONS; REGULARITY; MINIMIZERS;
D O I
10.3934/cpaa.2016.15.519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the equation Delta(2)(u) = lambda f(u) Omega, with either Navier or Dirichlet boundary conditions. We show some uniqueness results under certain constraints on the parameter lambda. We obtain similar results for the sytem {-Delta u = lambda f(v) Omega, -Delta v = gamma g(u) Omega, u = v = 0 partial derivative Omega.
引用
收藏
页码:519 / 533
页数:15
相关论文
共 29 条
[1]  
[Anonymous], 1997, Rev. Mat. Univ. Complut. Madrid
[2]  
[Anonymous], 1980, Commun. Partial Differ. Equ
[3]  
[Anonymous], 1905, Rend. Circ. Mat. Palermo
[4]  
[Anonymous], 1996, Adv. Differ. Equ.
[5]   A semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, G ;
Gazzola, F ;
Grunau, HC ;
Mitidieri, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1226-1258
[6]   On the extremal solutions of semilinear elliptic problems [J].
Ben Chaabane, Lamia .
ABSTRACT AND APPLIED ANALYSIS, 2005, (01) :1-9
[7]  
Berchio E., 2005, ELECT J DIFFERENTIAL, V34
[8]   Regularity of radial minimizers and extremal solutions of semilinear elliptic equations [J].
Cabre, Xavier ;
Capella, Antonio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) :709-733
[9]   Regularity of Minimizers of Semilinear Elliptic Problems Up to Dimension 4 [J].
Cabre, Xavier .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (10) :1362-1380
[10]  
Cassani D, 2009, ADV NONLINEAR STUD, V9, P177