HIGH-ORDER WELL-BALANCED FINITE-VOLUME SCHEMES FOR HYDRODYNAMIC EQUATIONS WITH NONLOCAL FREE ENERGY

被引:7
作者
Carrillo, Jose A. [1 ]
Castro, Manuel J. [2 ]
Kalliadasis, Serafim [3 ]
Perez, Sergio P. [3 ,4 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Univ Malaga, Dept Anal Matemat Estadist & Invest Operat & Mate, Bulevar Louis Pasteur 31, Malaga 29010, Spain
[3] Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England
[4] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
well-balanced scheme; hydrodynamic system; nonlocal free energy; high-order scheme; finite-volume scheme; HYPERBOLIC CONSERVATION-LAWS; SHALLOW-WATER EQUATIONS; CENTRAL WENO SCHEMES; EULER EQUATIONS; HYDROSTATIC RECONSTRUCTION; EFFICIENT IMPLEMENTATION; COLLECTIVE BEHAVIOR; PRESERVING SCHEMES; NUMERICAL SCHEMES; ARBITRARY ORDER;
D O I
10.1137/20M1332645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose high-order well-balanced finite-volume schemes for a broad class of hydrodynamic systems with attractive-repulsive interaction forces and linear and nonlinear damping. Our schemes are suitable for free energies containing convolutions of an interaction potential with the density, which are essential for applications such as the Keller{Segel model, more general Euler{Poisson systems, or dynamic-density functional theory. Our schemes are also equipped with a nonnegative-density reconstruction which allows for vacuum regions during the simulation. We provide several prototypical examples from relevant applications highlighting the benefit of our algorithms and also elucidate some of our analytical results.
引用
收藏
页码:A828 / A858
页数:31
相关论文
共 82 条
  • [61] From gas dynamics with large friction to gradient flows describing diffusion theories
    Lattanzio, Corrado
    Tzavaras, Athanasios E.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (02) : 261 - 290
  • [62] Compact central WENO schemes for multidimensional conservation laws
    Levy, D
    Puppo, G
    Russo, G
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) : 656 - 672
  • [63] Central WENO schemes for hyperbolic systems of conservation laws
    Levy, D
    Puppo, G
    Russo, G
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (03): : 547 - 571
  • [64] Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes
    Marche, F.
    Bonneton, P.
    Fabrie, P.
    Seguin, N.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (05) : 867 - 894
  • [65] Minakowski P, 2019, MODEL SIMUL SCI ENG, P201, DOI 10.1007/978-3-030-20297-2_7
  • [66] A New Model for Self-organized Dynamics and Its Flocking Behavior
    Motsch, Sebastien
    Tadmor, Eitan
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (05) : 923 - 947
  • [67] ASYMPTOTIC HIGH ORDER MASS-PRESERVING SCHEMES FOR A HYPERBOLIC MODEL OF CHEMOTAXIS
    Natalini, R.
    Ribot, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) : 883 - 905
  • [68] Natalini R, 2014, COMMUN MATH SCI, V12, P13
  • [69] Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows
    Noelle, S
    Pankratz, N
    Puppo, G
    Natvig, JR
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (02) : 474 - 499
  • [70] High-order well-balanced finite volume WENO schemes for shallow water equation with moving water
    Noelle, Sebastian
    Xing, Yulong
    Shu, Chi-Wang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) : 29 - 58